Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 5(5): 409-23, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20565617

RESUMO

SUMMARY We previously isolated a partial soybean cDNA clone (D17.1) whose corresponding transcript increases in susceptible roots 1 day post inoculation (dpi) with the soybean cyst nematode, Heterodera glycines. Here we isolated the corresponding full-length cDNA from a soybean cDNA library and designated this gene of unknown function Gm17.1. Time course RNA gel blot analyses revealed that Gm17.1 mRNA steady-state levels were elevated in soybean roots following H. glycines infection up to at least 6 dpi. For further in-depth study we identified a homologous Arabidopsis thaliana gene and designated this gene At17.1. Arabidopsis is successfully infected by the sugar beet cyst nematode (H. schachtii), a close relative of H. glycines. We isolated the At17.1 promoter, fused it to the beta-glucuronidase (GUS) reporter gene, and transformed this construct into Arabidopsis plants as well as soybean hairy roots. Histochemical analysis of plant materials containing the At17.1::GUS construct revealed that the At17.1 promoter is functional in Arabidopsis as well as in soybean and that during normal plant development the At17.1 promoter directs GUS expression predominantly to the vascular tissues and root tips of both plant species. When At17.1::GUS Arabidopsis plants and soybean hairy roots were inoculated with cyst nematodes, strong GUS activity was detected within the cyst nematode-induced feeding structures. Further tests of At17.1 promoter activity in Arabidopsis revealed that this promoter was induced by auxin, jasmonic acid, mannitol and dehydration. Quantitative real-time reverse transcription-polymerase chain reaction assays of At17.1 expression confirmed the observed promoter characteristics. Based on our expression data and the observation that both the soybean and the Arabidopsis homologues behaved in a similar fashion following cyst nematode infection, it is likely that these genes are closely associated with cyst nematode parasitism of plants, potentially with hormone and osmotic changes occurring in the developing nematode feeding cells. Furthermore, these data provide additional insights into the strengths of the Arabidopsis-H. schachtii pathosystem to study cyst nematode-plant interactions in lieu of less tractable pathosystems. This finding is supported by the fact that the Arabidopsis promoter tested here produced similar results in Arabidopsis and soybean.

2.
Plant Mol Biol ; 53(4): 513-30, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15010616

RESUMO

We previously isolated a partial soybean cDNA clone whose transcript abundance is increased upon infection by the sedentary, endoparasitic soybean cyst nematode Heterodera glycines. We now isolated the corresponding full-length cDNA and determined that the predicted gene product was similar to the group of cofactor-dependent phosphoglycerate mutase/bisphosphoglycerate mutase enzymes (PGM/bPGM; EC 5.4.2.1/5.4.2.4). We designated the corresponding soybean gene GmPGM. PGM and bPGM are key catalysts of glycolysis that have been well characterized in animals but not plants. Using the GmPGM cDNA sequence, we identified a homologous Arabidopsis thaliana gene, which we designated AtPGM. Histochemical GUS analyses of transgenic Arabidopsis plants containing the AtPGM promoter ::GUS construct revealed that the AtPGM promoter directs GUS expression in uninfected plants only to the shoot and root apical meristems. In infected plants, GUS staining also is evident in the nematode feeding structures induced by the cyst nematode Heterodera schachtii and by the root-knot nematode Meloidogyne incognita. Furthermore, we discovered that the AtPGM promoter was down-regulated by abscisic acid and hydroxyurea, whereas it was induced by sucrose, oryzalin, and auxin, thereby revealing expression characteristics typical of genes with roles in meristematic cells. Assessment of the auxin-inducible AUX1 gene promoter (a gene coding for a polar auxin transport protein) similarly revealed feeding cell and meristem expression, suggesting that auxin may be responsible for the observed tissue specificity of the AtPGM promoter. These results provide first insight into the possible roles of PGM/bPGM in plant physiology and in plant-pathogen interactions.


Assuntos
Glycine max/genética , Meristema/genética , Nematoides/crescimento & desenvolvimento , Fosfoglicerato Mutase/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Soja/genética , Sulfanilamidas , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , DNA Complementar/química , DNA Complementar/genética , Dinitrobenzenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Proteínas de Soja/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/parasitologia , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...