Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1137834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035077

RESUMO

Introduction: Genomic selection is becoming a standard technique in plant breeding and is now being introduced into forest tree breeding. Despite promising results to predict the genetic merit of superior material based on their additive breeding values, many studies and operational programs still neglect non-additive effects and their potential for enhancing genetic gains. Methods: Using two large comprehensive datasets totaling 4,066 trees from 146 full-sib families of white spruce (Picea glauca (Moench) Voss), we evaluated the effect of the inclusion of dominance on the precision of genetic parameter estimates and on the accuracy of conventional pedigree-based (ABLUP-AD) and genomic-based (GBLUP-AD) models. Results: While wood quality traits were mostly additively inherited, considerable non-additive effects and lower heritabilities were detected for growth traits. For growth, GBLUP-AD better partitioned the additive and dominance effects into roughly equal variances, while ABLUP-AD strongly overestimated dominance. The predictive abilities of breeding and total genetic value estimates were similar between ABLUP-AD and GBLUP-AD when predicting individuals from the same families as those included in the training dataset. However, GBLUP-AD outperformed ABLUP-AD when predicting for new unphenotyped families that were not represented in the training dataset, with, on average, 22% and 53% higher predictive ability of breeding and genetic values, respectively. Resampling simulations showed that GBLUP-AD required smaller sample sizes than ABLUP-AD to produce precise estimates of genetic variances and accurate predictions of genetic values. Still, regardless of the method used, large training datasets were needed to estimate additive and non-additive genetic variances precisely. Discussion: This study highlights the different quantitative genetic architectures between growth and wood traits. Furthermore, the usefulness of genomic additive-dominance models for predicting new families should allow practicing mating allocation to maximize the total genetic values for the propagation of elite material.

3.
Heredity (Edinb) ; 124(4): 562-578, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969718

RESUMO

Genomic selection (GS) has a large potential for improving the prediction accuracy of breeding values and significantly reducing the length of breeding cycles. In this context, the choice of mating designs becomes critical to improve the efficiency of breeding operations and to obtain the largest genetic gains per time unit. Polycross mating designs have been traditionally used in tree and plant breeding to perform backward selection of the female parents. The possibility to use genetic markers for paternity identification and for building genomic prediction models should allow for a broader use of polycross tests in forward selection schemes. We compared the accuracies of genomic predictions of offspring's breeding values from a polycross and a full-sib (partial diallel) mating design with similar genetic background in white spruce (Picea glauca). Trees were phenotyped for growth and wood quality traits, and genotyped for 4092 SNPs representing as many gene loci distributed across the 12 spruce chromosomes. For the polycross progeny test, heritability estimates were smaller, but more precise using the genomic BLUP (GBLUP) model as compared with pedigree-based models accounting for the maternal pedigree or for the reconstructed full pedigree. Cross-validations showed that GBLUP predictions were 22-52% more accurate than predictions based on the maternal pedigree, and 5-7% more accurate than predictions using the reconstructed full pedigree. The accuracies of GBLUP predictions were high and in the same range for most traits between the polycross (0.61-0.70) and full-sib progeny tests (0.61-0.74). However, higher genetic gains per time unit were expected from the polycross mating design given the shorter time needed to conduct crosses. Considering the operational advantages of the polycross design in terms of easier handling of crosses and lower associated costs for test establishment, we believe that this mating scheme offers great opportunities for the development and operational application of forward GS.


Assuntos
Cruzamentos Genéticos , Picea , Melhoramento Vegetal , Seleção Genética , Genômica , Modelos Genéticos , Fenótipo , Picea/genética , Polimorfismo de Nucleotídeo Único , Traqueófitas
4.
Evol Appl ; 13(1): 76-94, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892945

RESUMO

Plantation-grown trees have to cope with an increasing pressure of pest and disease in the context of climate change, and breeding approaches using genomics may offer efficient and flexible tools to face this pressure. In the present study, we targeted genetic improvement of resistance of an introduced conifer species in Canada, Norway spruce (Picea abies (L.) Karst.), to the native white pine weevil (Pissodes strobi Peck). We developed single- and multi-trait genomic selection (GS) models and selection indices considering the relationships between weevil resistance, intrinsic wood quality, and growth traits. Weevil resistance, acoustic velocity as a proxy for mechanical wood stiffness, and average wood density showed moderate-to-high heritability and low genotype-by-environment interactions. Weevil resistance was genetically positively correlated with tree height, height-to-diameter at breast height (DBH) ratio, and acoustic velocity. The accuracy of the different GS models tested (GBLUP, threshold GBLUP, Bayesian ridge regression, BayesCπ) was high and did not differ among each other. Multi-trait models performed similarly as single-trait models when all trees were phenotyped. However, when weevil attack data were not available for all trees, weevil resistance was more accurately predicted by integrating genetically correlated growth traits into multi-trait GS models. A GS index that corresponded to the breeders' priorities achieved near maximum gains for weevil resistance, acoustic velocity, and height growth, but a small decrease for DBH. The results of this study indicate that it is possible to breed for high-quality, weevil-resistant Norway spruce reforestation stock with high accuracy achieved from single-trait or multi-trait GS.

5.
BMC Genomics ; 18(1): 335, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454519

RESUMO

BACKGROUND: Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. RESULTS: The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were identified to carry large effects, indicating a minor role for short-range LD in this population. CONCLUSIONS: This study supports the integration of GS models in advanced-generation tree breeding programs, given that high genomic prediction accuracy was obtained with a relatively small number of markers due to high relatedness and family structure in the population. In boreal spruce breeding programs and similar ones with long breeding cycles, much larger gain per unit of time can be obtained from genomic selection at an early age than by the conventional approach. GS thus appears highly profitable, especially in the context of forward selection in species which are amenable to mass vegetative propagation of selected stock, such as spruces.


Assuntos
Cruzamento , Genômica , Picea/crescimento & desenvolvimento , Picea/genética , Madeira , Ligação Genética , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...