Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(15): 5406-5414, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29589635

RESUMO

A facile method was demonstrated for the one-step synthesis of reduced graphene oxide (rGO) from graphite oxide (GO) using a camphor assisted combustion (CAC) process. Analysis of samples was carried out using FT-IR, XRD, TGA, Raman, BET, SEM and TEM techniques. The electrochemical properties of the rGO samples derived through the CAC process were determined using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. It has been observed that the specific surface area and porosity of the rGO samples decrease with the increasing concentration of camphor during the CAC synthesis process. Thus, different mass ratios of GO and camphor such as 1 : 12, 1 : 16, and 1 : 20 in the CAC process yield rGO samples having surface areas (SBET) of 313.3, 297.5 and 177.4 m2 g-1. The pore volumes of the respective samples are 0.44, 0.45 and 0.23 cm3 g-1, respectively. The rGO derived using the 1 : 12 mass ratio of GO and camphor (rGO-12C) exhibits a high specific capacitance of 241 F g-1, which is significantly higher than that observed for chemically reduced graphene oxide (rGO-CR), which exhibits a specific capacitance value of only 153 F g-1. The capacitance retention of rGO-12C was found to be 98% even after 1000 galvanostatic charge-discharge (GCD) cycles, suggesting its potential applications in electrochemical energy storage.

2.
RSC Adv ; 8(36): 20440-20449, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35541670

RESUMO

Herein, we report the covalent functionalization of graphene oxide (GO) through ''click'' reaction and its applications towards ammonia sensing. This inimitable method of covalent functionalization involves linking GO with azide moiety and click coupling of different derivatives of aryl propargyl ether, which enhances the sensitivity towards ammonia. The functionalized GO were characterized using NMR, XRD, SEM, FT-IR, Raman, UV-Vis, TGA and DSC. Compared to pristine GO, the GO functionalized with Ar samples (GO-Ar) exhibit excellent room temperature ammonia sensing properties with good response/recovery characteristics. It has been observed that 2,3-difluoro and 2,3,4-trifluoro substituted aryl propargyl ether functionalized GO (GO-Ar2 and GO-Ar3) shows superior ammonia sensing with response/recovery of 63%/∼90% and 60%/100%, respectively at 20 ppm. The GO-Ar3 exhibits high sensitivity towards ammonia at 20-100 ppm. Computational studies supports the high sensitivity of GO-Ar towards ammonia due to its high adsorption energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA