Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017707

RESUMO

The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem, which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free-energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.

2.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586024

RESUMO

The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem which could enable many practical applications of protein biosensors. In this work, we analyzed two engineer ed biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.

3.
IEEE Trans Vis Comput Graph ; 29(8): 3698-3713, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35468062

RESUMO

We present an empirical evaluation of immersion and self-avatars as compared to desktop viewing in Virtual Reality (VR) for learning computer programming and computational thinking in middle school education using an educational VR simulation. Students were asked to programmatically choreograph dance performances for virtual characters within an educational desktop application we built earlier called Virtual Environment Interactions (VEnvI). As part of a middle school science class, 90 students from the 6th and 7th grades participated in our study. All students first visually programmed dance choreography for a virtual character they created in VEnvI on a laptop. Then, they viewed and interacted with the resulting dance performance in a between-subjects design in one of the three conditions. We compared and contrasted the benefits of embodied immersive virtual reality (EVR) viewing utilizing a head-mounted display with a body-scaled and gender-matched self-avatar, immersive virtual reality only (IVR) viewing, and desktop VR (NVR) viewing with VEnvI on pedagogical outcomes, programming performance, presence, and attitudes towards STEM and computational thinking. Results from a cognition questionnaire showed that, in the learning dimensions of Knowledge and Understanding (Bloom's taxonomy) as well as Multistructural (SOLO taxonomy), participants in EVR and IVR scored significantly higher than NVR. Also, participants in EVR scored significantly higher than IVR. We also discovered similar results in objective programming performance and presence scores in VEnvI. Furthermore, students' attitudes towards computer science, programming confidence, and impressions significantly improved to be the highest in EVR and then IVR as compared to NVR condition. Our work suggests that educators and developers of educational VR simulations, who want to enhance knowledge and understanding as well as simultaneous acquisition of multiple abstract concepts, can do so by employing immersion and self-avatars in VR learning experiences.


Assuntos
Imersão , Realidade Virtual , Humanos , Gráficos por Computador , Aprendizagem , Instituições Acadêmicas
4.
Curr Opin Biotechnol ; 78: 102787, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36058141

RESUMO

Genetically encoded protein biosensors controlled by small organic molecules are valuable tools for many biotechnology applications, including control of cellular decisions in living cells. Here, we review recent advances in protein biosensor design and engineering for binding to novel ligands. We categorize sensor architecture as either integrated or portable, where portable biosensors uncouple molecular recognition from signal transduction. Proposed advances to improve portable biosensor development include standardizing a limited set of protein scaffolds, and automating ligand-compatibility screening and ligand-protein-interface design.


Assuntos
Técnicas Biossensoriais , Ligantes , Proteínas/química , Biotecnologia , Engenharia de Proteínas
5.
Nat Biotechnol ; 40(12): 1855-1861, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35726092

RESUMO

A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense-response applications.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biossensoriais , Reguladores de Crescimento de Plantas , Proteínas de Arabidopsis/genética , Ligantes , Plantas
6.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35325236

RESUMO

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Sítios de Ligação , Glicoproteínas de Membrana/metabolismo , Mutação , Domínios Proteicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Sci Transl Med ; 14(626): eabg7859, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985973

RESUMO

Sensory atypicalities in autism spectrum disorder (ASD) are thought to arise at least partly from differences in γ-aminobutyric acid (GABA) receptor function. However, the evidence to date has been indirect, arising from correlational studies in patients and preclinical models. Here, we evaluated the role of GABA receptor directly, in 44 adults (n = 19 ASD). Baseline concentration of occipital lobe GABA+ (GABA plus coedited macromolecules) was measured using proton magnetic resonance spectroscopy (1H-MRS). Steady-state visual evoked potential (SSVEP) elicited by a passive visual surround suppression paradigm was compared after double-blind randomized oral administration of placebo or 15 to 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. In the placebo condition, the neurotypical SSVEP response was affected by both the foreground stimuli contrast and background interference (suppression). In ASD, however, all stimuli conditions had equal salience and background suppression of the foreground response was weaker. In the placebo condition, although there was no difference in GABA+ between groups, GABA+ concentration positively correlated with response to maximum foreground contrast during maximum background interference in neurotypicals, but not ASD. In neurotypicals, sensitivity to visual stimuli was disrupted by 30 mg of arbaclofen, whereas in ASD, it was made more "typical" and visual processing differences were abolished. Hence, differences in GABAergic function are fundamental to autistic (visual) sensory neurobiology and are modulated by GABAB activity.


Assuntos
Transtorno do Espectro Autista , Adulto , Potenciais Evocados Visuais , Humanos , Espectroscopia de Ressonância Magnética/métodos , Receptores de GABA , Percepção Visual , Ácido gama-Aminobutírico
8.
bioRxiv ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34845448

RESUMO

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability-enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain (S RBD) using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L RBD mutations, maintains recognition by the receptor ACE2 and a panel of different anti-RBD monoclonal antibodies, is between 1-2°C more thermally stable than the original RBD using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original RBD. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes, particularly powerful for cases when there are multiple or unknown binding sites.

9.
Cell Rep ; 36(9): 109627, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34416153

RESUMO

The potential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) escape mutants is a threat to the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutation landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural coronavirus disease 2019 (COVID-19) infection. Escape mutations predominantly mapped to the periphery of the angiotensin-converting enzyme 2 (ACE2) recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

10.
Biophys J ; 120(9): 1777-1787, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640381

RESUMO

Preferential lipid solvation of the G-protein-coupled A2A adenosine receptor (A2AR) is evaluated from 35 µs of all-atom molecular dynamics simulation. A coarse-grained transition matrix algorithm is developed to overcome slow equilibration of the first solvation shell, obtaining estimates of the free energy of solvation by different lipids for the receptor in different activation states. Results indicate preference for solvation by unsaturated chains, which favors the active receptor. A model for lipid-dependent G-protein-coupled receptor activity is proposed in which the chemical potential of lipids in the bulk membrane modulates receptor activity. The entropies associated with moving saturated and unsaturated lipids from bulk to A2AR's first solvation shell are evaluated. Overall, the acyl chains are more disordered (i.e., obtain a favorable entropic contribution) when partitioning to the receptor surface, and this effect is augmented for the saturated chains, which are relatively more ordered in bulk.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Entropia , Receptores Acoplados a Proteínas G
11.
J Phys Chem B ; 124(5): 828-839, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31916765

RESUMO

Ethanolamine plasmalogen (EtnPLA) is a conical-shaped ether lipid and an essential component of neurological membranes. Low stability against oxidation limits its study in experiments. The concentration of EtnPLA in the bilayer varies depending on cell type and disease progression. Here we report on mixed bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphoethanolamine (C18(Plasm)-18:1PE, PLAPE), an EtnPLA lipid subtype, at mole ratios of 2:1, 1:1, and 1:2. We present X-ray diffuse scattering (XDS) form factors F(qz) from oriented stacks of bilayers, related electron-density profiles, and hydrocarbon chain NMR order parameters. To aid future research on EtnPLA lipids and associated proteins, we have also extended the CHARMM36 all-atom force field to include the PLAPE lipid. The ability of the new force-field parameters to reproduce both X-ray and NMR structural properties of the mixed bilayer is remarkable. Our results indicate a thickening of the bilayer upon incorporation of increasing amounts of PLAPE into mixed bilayers, a reduction of lateral area per molecule, and an increase in lipid tail-ordering. The lateral compressibility modulus (KA) calculated from simulations yielded values for PLAPE similar to POPC.


Assuntos
Bicamadas Lipídicas/química , Plasmalogênios/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Termodinâmica
12.
Chem Rev ; 119(9): 6227-6269, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30785731

RESUMO

The amphipathic nature of the lipid molecule (hydrophilic head and hydrophobic tails) enables it to act as a barrier between fluids with various properties and to sustain an environment where the processes critical to life may proceed. While computer simulations of biomolecules primarily investigate protein conformation and binding to drug-like molecules, these interactions often occur in the context of a lipid membrane. Chemical specificity of lipid models is essential to accurately represent the complex environment of the lipid membrane. This review discusses the development and performance of currently used chemically specific lipid force fields (FF) such as the CHARMM, AMBER, GROMOS, OPLS, and MARTINI families. Considerations in lipid FF development including lipid diversity, temperature dependence, phase behavior, and effects of atomic polarizability are considered, as well as methods and goals of parametrization. Applications of these FFs to complex and diverse models for cellular membranes are summarized. Lastly, areas for future development, such as efficient inclusion of long-range Lennard-Jones interactions (significant in transitions from polar to apolar media), accurate transmembrane dipole potential, and diffusion under periodic boundary conditions are considered.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Termodinâmica
13.
J Phys Chem B ; 123(7): 1554-1565, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30681857

RESUMO

Beryllium has multiple industrial applications but exposure to its dust during manufacturing is associated with developing chronic inflammation in lungs known as berylliosis. Besides binding to specific alleles of MHC-II, Be2+ was recently found to compete with Ca2+ for binding sites on phosphatidylserine-containing membranes and inhibit recognition of this lipid by phagocytes. Computational studies of possible molecular targets for this small toxic dication are impeded by the absence of a reliable force field. This study introduces parameters for Be2+ for the CHARMM36 additive force field that represent interactions with water, including free energy of hydration and ion-monohydrate interaction energy and separation distance; and interaction parameters describing Be2+ affinity for divalent ion binding sites on lipids, namely phosphoryl and carboxylate oxygens. Results from isothermal titration calorimetry experiments for the binding affinities of Be2+ to dimethyl phosphate and acetate ions reveal that Be2+ strongly binds to phosphoryl groups. Revised interaction parameters for Be2+ with these types of oxygens reproduce experimental affinities in solution simulations. Surface tensions calculated from simulations of DOPS monolayers with varied concentrations of Be2+ are compared with prior results from Langmuir monolayer experiments, verifying the compacting effect that produces greater surface tensions (lower pressures) for Be2+-bound monolayers at the same surface area in comparison with K+. The new parameters will enable simulations that should reveal the mechanism of Be2+ interference with molecular recognition and signaling processes.


Assuntos
Berílio/química , Calorimetria , Fosfatidilserinas/química , Sítios de Ligação , Íons/química , Simulação de Dinâmica Molecular , Tensão Superficial , Termodinâmica , Água/química
14.
J Phys Chem B ; 122(26): 6744-6754, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29870257

RESUMO

Linear ethers such as polyethylene glycol have extensive industrial and medical applications. Additionally, phospholipids containing an ether linkage between the glycerol backbone and hydrophobic tails are prevalent in human red blood cells and nerve tissue. This study uses ab initio results to revise the CHARMM additive (C36) partial-charge and dihedral parameters for linear ethers and develop parameters for the ether-linked phospholipid 1,2-di- O-hexadecyl- sn-glycero-3-phosphocholine (DHPC). The new force field, called C36e, more accurately represents the dihedral potential energy landscape and improves the densities and free energies of hydration of linear ethers. C36e allows more water to penetrate into a DHPC bilayer, increasing the surface area per lipid compared to simulations carried out with the original C36 ether parameters and improving the overall structural properties obtained from X-ray and neutron scattering. Comparison with an ester-linked DPPC bilayer (1,2-dipalmitoyl- sn-phosphatidylcholine) reveals that the ether linkage increases water organization in the headgroup region. This effect is a likely explanation for the experimentally lower water permeability of bilayers composed of ether-linked lipids.


Assuntos
Éteres/química , Éteres Fosfolipídicos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Água/química
15.
J Chem Theory Comput ; 14(2): 948-958, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29268012

RESUMO

Long-range Lennard-Jones (LJ) interactions have a significant impact on the structural and thermodynamic properties of nonpolar systems. While several methods have been introduced for the treatment of long-range LJ interactions in molecular dynamics (MD) simulations, increased accuracy and extended applicability is required for anisotropic systems such as lipid bilayers. The recently refined Lennard-Jones particle-mesh Ewald (LJ-PME) method extends the particle-mesh Ewald (PME) method to long-range LJ interactions and is suitable for use with anisotropic systems. Implementation of LJ-PME with the CHARMM36 (C36) additive and CHARMM Drude polarizable force fields improves agreement with experiment for density, isothermal compressibility, surface tension, viscosity, translational diffusion, and 13C T1 relaxation times of pure alkanes. Trends in the temperature dependence of the density and isothermal compressibility of hexadecane are also improved. While the C36 additive force field with LJ-PME remains a useful model for liquid alkanes, the Drude polarizable force field with LJ-PME is more accurate for nearly all quantities considered. LJ-PME is also preferable to the isotropic long-range correction for hexadecane because the molecular order extends to nearly 20 Å, well beyond the usual 10-12 Å cutoffs used in most simulations.

16.
Aging Cell ; 16(6): 1425-1429, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940623

RESUMO

As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer-lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature-specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature-specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature-associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age-related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade , Envelhecimento , Animais , Humanos , Temperatura
17.
Age (Dordr) ; 38(5-6): 419-431, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27566309

RESUMO

Improving healthspan, defined as the period where organisms live without frailty and/or disease, is a major goal of biomedical research. While healthspan measures in people are relatively easy to identify, developing robust markers of healthspan in model organisms has proven challenging. Studies using the nematode Caenorhabditis elegans have provided vital information on the basic mechanisms of aging; however, worm health is difficult to define, and the impact of interventions that increase lifespan on worm healthspan has been controversial. Here, we describe a marker of population healthspan in C. elegans that we term age-associated vulval integrity defects, or Avid, frequently described elsewhere as rupture or exploding. We connect the presence of this phenotype with temperature, reproduction, diet, and longevity. Our results show that Avid occurs in post-reproductive worms under common laboratory conditions at a frequency that correlates negatively with temperature; Avid is rare in worms kept at 25 °C and more frequent in worms kept at 15 °C. We describe the kinetics of Avid, link the phenotype to oocyte production, and describe how Avid involves the ejection of worm proteins and/or internal organ(s) from the vulva. Finally, we find that Avid is preventable by removing worms from food, suggesting that Avid results from the intake, digestion, and/or absorption of food. Our results show that Avid is a significant cause of death in worm populations maintained under laboratory conditions and that its prevention often correlates with worm longevity. We propose that Avid is a powerful marker of worm healthspan whose underlying molecular mechanisms may be conserved.


Assuntos
Envelhecimento/patologia , Caenorhabditis elegans/fisiologia , Vulva/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dieta , Feminino , Saúde , Longevidade , Mutação/genética , Oócitos/metabolismo , Fenótipo , Reprodução , Temperatura , Fatores de Transcrição/genética
18.
Science ; 350(6266): 1375-1378, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26586189

RESUMO

Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in Caenorhabditis elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and is necessary for DR-mediated life-span extension, which suggests that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple life span-extending interventions in mice, which suggests that these enzymes may play a critical role in promoting health and longevity across phyla.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Intestinos/enzimologia , Longevidade/fisiologia , Neurônios/metabolismo , Oxigenases/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dieta , Longevidade/genética , Camundongos , Oxigenases/genética , Estabilidade Proteica , Interferência de RNA , Receptores de Serotonina/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...