Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 32(3): 772-785, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33567214

RESUMO

We report the generation of gas-phase riboguanosine radicals that were tagged at ribose with a fixed-charge 6-(trimethylammonium)hexane-1-aminocarbonyl group. The radical generation relied on electron transfer from fluoranthene anion to noncovalent dibenzocrown-ether dication complexes which formed nucleoside cation radicals upon one-electron reduction and crown-ether ligand loss. The cation radicals were characterized by collision-induced dissociation (CID), photodissociation (UVPD), and UV-vis action spectroscopy. Identification of charge-tagged guanosine radicals was challenging because of spontaneous dissociations by loss of a hydrogen atom and guanine that occurred upon storing the ions in the ion trap without further excitation. The loss of H proceeded from an exchangeable position on N-7 in guanine that was established by deuterium labeling and was the lowest energy dissociation of the guanosine radicals according to transition-state energy calculations. Rate constant measurements revealed an inverse isotope effect on the loss of either hydrogen or deuterium with rate constants kH = 0.25-0.26 s-1 and kD = 0.39-0.54 s-1. We used time-dependent density functional theory calculations, including thermal vibronic effects, to predict the absorption spectra of several protomeric radical isomers. The calculated spectra of low-energy N-7-H guanine-radical tautomers closely matched the action spectra. Transition-state-theory calculations of the rate constants for the loss of H-7 and guanine agreed with the experimental rate constants for a narrow range of ion effective temperatures. Our calculations suggest that the observed inverse isotope effect does not arise from the isotope-dependent differences in the transition-state energies. Instead, it may be caused by the dynamics of post-transition-state complexes preceding the product separation.

2.
Chembiochem ; 21(22): 3208-3211, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32596917

RESUMO

The unmodified R5 peptide from silaffin in the diatom Cylindrotheca fusiformis rapidly precipitates silica particles from neutral aqueous solutions of orthosilicic acid. A range of post-translational modifications found in R5 contribute toward tailoring silica morphologies in a species-specific manner. We investigated the specific effect of R5 lysine side-chain trimethylation, which adds permanent positive charges, on silica particle formation. Our studies revealed that a doubly trimethylated R5K3,4me3 peptide has reduced maximum activity yet, surprisingly, generates larger silica particles. Molecular dynamics simulations of R5K3,4me3 binding by the precursor orthosilicate anion revealed that orthosilicate preferentially associates with unmodified lysine side-chain amines and the peptide N terminus. Thus, larger silica particles arise from reduced orthosilicate association with trimethylated lysine side chains and their redirection to the N terminus of the R5 peptide.


Assuntos
Fragmentos de Peptídeos/química , Precursores de Proteínas/química , Ácido Silícico/química , Dióxido de Silício/química , Sítios de Ligação , Diatomáceas/química , Metilação , Simulação de Dinâmica Molecular , Tamanho da Partícula
3.
Biochemistry ; 59(27): 2479-2483, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32567837

RESUMO

The essential human enzyme lysine specific demethylase 1 (LSD1) silences genes by demethylating mono- and dimethylated lysine 4 in histone H3 (H3K4me1/2). Studies of the minimal requirements for LSD1 activity are complicated by the heterogeneity of histone modification states in cells. We overcame this challenge by generating homogeneous mononucleosome substrates containing semisynthetic H3K4me2. Biophysical and biochemical assays with full-length LSD1 revealed its ability to bind and demethylate nucleosomes. Consistent with a requirement for nucleosome binding prior to demethylation, a competing nucleosome-binding peptide from the high-mobility group protein effectively inhibited LSD1 activity. Thus, our studies provide the first glimpse of nucleosome demethylation by LSD1 in the absence of other scaffolding proteins.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Histona Desmetilases/química , Histona Desmetilases/isolamento & purificação , Histonas/química , Humanos , Metilação , Modelos Moleculares , Nucleossomos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...