Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577210

RESUMO

Human sensorimotor decision making has a tendency to get 'stuck in a rut', being biased towards selecting a previously implemented action structure (hysteresis). Existing explanations propose this is the consequence of an agent efficiently modifying an existing plan, rather than creating a new plan from scratch. Instead, we propose that hysteresis is an emergent property of a system learning from the consequences of its actions. To examine this, 152 participants moved a cursor to a target on a tablet device while avoiding an obstacle. Hysteresis was observed when the obstacle moved sequentially across the screen between trials, whereby the participant continued moving around the same side of the obstacle despite it now requiring a larger movement than the alternative. Two further experiments (n = 20) showed an attenuation when time and resource constraints were eased. We created a simple computational model capturing probabilistic estimate updating that showed the same patterns of results. This provides, to our knowledge, the first computational demonstration of how sensorimotor decision making can get 'stuck in a rut' through the updating of the probability estimates associated with actions.

2.
PNAS Nexus ; 2(6): pgad163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37346270

RESUMO

When humans share space in road traffic, as drivers or as vulnerable road users, they draw on their full range of communicative and interactive capabilities. Much remains unknown about these behaviors, but they need to be captured in models if automated vehicles are to coexist successfully with human road users. Empirical studies of human road user behavior implicate a large number of underlying cognitive mechanisms, which taken together are well beyond the scope of existing computational models. Here, we note that for all of these putative mechanisms, computational theories exist in different subdisciplines of psychology, for more constrained tasks. We demonstrate how these separate theories can be generalized from abstract laboratory paradigms and integrated into a computational framework for modeling human road user interaction, combining Bayesian perception, a theory of mind regarding others' intentions, behavioral game theory, long-term valuation of action alternatives, and evidence accumulation decision-making. We show that a model with these assumptions-but not simpler versions of the same model-can account for a number of previously unexplained phenomena in naturalistic driver-pedestrian road-crossing interactions, and successfully predicts interaction outcomes in an unseen data set. Our modeling results contribute to demonstrating the real-world value of the theories from which we draw, and address calls in psychology for cumulative theory-building, presenting human road use as a suitable setting for work of this nature. Our findings also underscore the formidable complexity of human interaction in road traffic, with strong implications for the requirements to set on development and testing of vehicle automation.

3.
Accid Anal Prev ; 190: 107173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336051

RESUMO

Society greatly expects the widespread deployment of automated vehicles (AVs). However, the absence of a driver role results in unresolved communication issues between pedestrians and AVs. Research has shown the crucial role of implicit communication signals in this context. Nonetheless, it remains unclear how pedestrians subjectively estimate vehicle behaviour and whether they incorporate these estimations as part of their crossing decisions. For the first time, this study explores the impact of implicit communication signals on pedestrians' subjective estimations of approaching vehicle behaviour across a wide range of experimental traffic scenarios and on their crossing decisions in the same scenarios through a comprehensive analysis. Two simulator tasks, namely a natural road crossing task and a vehicle behaviour estimation task, were designed with controlled time to collision, vehicle speed, and deceleration behaviour. A novel finding is that the correlation between crossing decisions and vehicle behaviour estimations depends on the traffic scenario. Pedestrians' recognition of different deceleration behaviour aligned with their crossing decisions, supporting the notion that they actively estimate vehicle behaviour as part of their decision-making process. However, if the traffic gap was long enough, the effects of vehicle speed were the opposite between crossing decisions and estimations, suggesting that vehicle behaviour estimation may not directly impact crossing decisions when the time gap to the vehicle is large. We also found that pedestrians crossed the street earlier and estimated yielding behaviour more accurately in early-onset braking scenarios than in late-onset braking scenarios. Interestingly, vehicle speed significantly affected pedestrians' estimations, with pedestrians tending to perceive low vehicle speed as yielding behaviour regardless of whether the vehicle yielded. Finally, we demonstrated that visual cue τ̇ is a practical indicator for controlling the vehicle deceleration evidence in the experiment. In conclusion, these findings reveal in detail the role of deceleration parameters as implicit communication signals between pedestrians and AVs, with implications for road crossing safety and the development of AVs.


Assuntos
Acidentes de Trânsito , Pedestres , Humanos , Acidentes de Trânsito/prevenção & controle , Veículos Autônomos , Desaceleração , Comunicação , Segurança , Caminhada
4.
PLoS One ; 14(2): e0211706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730947

RESUMO

Some activities can be meaningfully dichotomised as 'cognitive' or 'sensorimotor' in nature-but many cannot. This has radical implications for understanding activity limitation in disability. For example, older adults take longer to learn the serial order of a complex sequence but also exhibit slower, more variable and inaccurate motor performance. So is their impaired skill acquisition a cognitive or motor deficit? We modelled sequence learning as a process involving a limited capacity buffer (working memory), where reduced performance restricts the number of elements that can be stored. To test this model, we examined the relationship between motor performance and sequence learning. Experiment 1 established that older adults were worse at learning the serial order of a complex sequence. Experiment 2 found that participants showed impaired sequence learning when the non-preferred hand was used. Experiment 3 confirmed that serial order learning is impaired when motor demands increase (as the model predicted). These results can be captured by reinforcement learning frameworks which suggest sequence learning will be constrained both by an individual's sensorimotor ability and cognitive capacity.


Assuntos
Cognição/fisiologia , Mãos/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Destreza Motora/fisiologia , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Reforço Psicológico , Aprendizagem Seriada/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...