Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 14(1): 2244232, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578162

RESUMO

Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.


Assuntos
Inteligência Artificial , Microalgas , Humanos , Lógica Fuzzy , Redes Neurais de Computação
2.
J Sep Sci ; 45(12): 2064-2076, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35191590

RESUMO

The advancement of recombinant virus-like particle-based vaccines has attracted global attention owing to substantially safety and high efficacy in provoking a protective immunity against various chronic and infectious diseases in humans and animals. A robust, low-cost, and scalability separation and purification technology is of utmost importance in the downstream processing of recombinant virus-like particles to produce affordable and safe vaccines. Being a relatively simple, environmentally friendly, and efficient biomolecules recovery approach, aqueous two-phase systems have received great attention from researchers worldwide. This review aims to highlight the challenges and outlook in addition to the current applications of aqueous two-phase systems in downstream processing of virus-like particles. The efforts will confidently reinforce scholars' knowledge and fill in the valuable research gap in the aspect of concerning recombinant virus-like particle-based vaccines development, particularly related to the virus-like particles downstream production processes.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Animais
3.
Biotechnol Adv ; 54: 107819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34454007

RESUMO

Microalgae biorefinery is a platform for the conversion of microalgal biomass into a variety of value-added products, such as biofuels, bio-based chemicals, biomaterials, and bioactive substances. Commercialization and industrialization of microalgae biorefinery heavily rely on the capability and efficiency of large-scale cultivation of microalgae. Thus, there is an urgent need for novel technologies that can be used to monitor, automatically control, and precisely predict microalgae production. In light of this, innovative applications of the Internet of things (IoT) technologies in microalgae biorefinery have attracted tremendous research efforts. IoT has potential applications in a microalgae biorefinery for the automatic control of microalgae cultivation, monitoring and manipulation of microalgal cultivation parameters, optimization of microalgae productivity, identification of toxic algae species, screening of target microalgae species, classification of microalgae species, and viability detection of microalgal cells. In this critical review, cutting-edge IoT technologies that could be adopted to microalgae biorefinery in the upstream and downstream processing are described comprehensively. The current advances of the integration of IoT with microalgae biorefinery are presented. What this review discussed includes automation, sensors, lab-on-chip, and machine learning, which are the main constituent elements and advanced technologies of IoT. Specifically, future research directions are discussed with special emphasis on the development of sensors, the application of microfluidic technology, robotized microalgae, high-throughput platforms, deep learning, and other innovative techniques. This review could contribute greatly to the novelty and relevance in the field of IoT-based microalgae biorefinery to develop smarter, safer, cleaner, greener, and economically efficient techniques for exhaustive energy recovery during the biorefinery process.


Assuntos
Internet das Coisas , Microalgas , Biocombustíveis , Biomassa , Plantas
4.
Sci Total Environ ; 793: 148705, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328982

RESUMO

Fuel cells (FCs) are a chemical fuel device which can directly convert chemical energy into electrical energy, also known as electrochemical generator. Proton exchange membrane fuel cells (PEMFCs) are one of the most appealing FC systems that have been broadly developed in recent years. Due to the poor conductivity of electrolyte membrane used in traditional PEMFC, its operation at higher temperature is greatly limited. The incorporation of ionic liquids (ILs) which is widely regarded as a greener alternative compared to traditional solvents in the proton exchange membrane electrolyte shows great potential in high temperature PEMFCs (HT-PEMFCs). This review provides insights in the latest progress of utilizing ILs as an electrochemical electrolyte in PEMFCs. Besides, electrolyte membranes that are constructed by ILs combined with polybenzimidazole (PBI) have many benefits such as better thermal stability, improved mechanical properties, and higher proton conductivity. The current review aims to investigate the newest development and existing issues of ILs research in electrolyte and material selection, system fabrication method, synthesis of ILs, and experimental techniques. The evaluation of life cycle analysis, commercialization, and greenness of ILs are also discussed. Hence, this review provides insights to material scientists and develops interest of wider community, promoting the use of ILs to meet energy challenges.


Assuntos
Líquidos Iônicos , Eletrólitos , Membranas Artificiais , Prótons , Tecnologia
5.
Eng Life Sci ; 21(6): 382-391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34140849

RESUMO

Downstream processing of mAb charge variants is difficult owing to their similar molecular structures and surface charge properties. This study aimed to apply a novel twin-column continuous chromatography (called N-rich mode) to separate and enrich acidic variants of an IgG1 mAb. Besides, a comparison study with traditional scaled-up batch-mode cation exchange (CEX) chromatography was conducted. For the N-rich process, two 3.93 mL columns were used, and the buffer system, flow rate and elution gradient slope were optimized. The results showed that 1.33 mg acidic variants with nearly 100% purity could be attained after a 22-cycle accumulation. The yield was 86.21% with the productivity of 7.82 mg/L/h. On the other hand, for the batch CEX process, 4.15 mL column was first used to optimize the separation conditions, and then a scaled-up column of 88.20 mL was used to separate 1.19 mg acidic variants with the purity of nearly 100%. The yield was 59.18% with the productivity of 7.78 mg/L/h. By comparing between the N-rich and scaled-up CEX processes, the results indicated that the N-rich method displays a remarkable advantage on the product yield, i.e. 1.46-fold increment without the loss of productivity and purity. Generally, twin-column N-rich continuous chromatography displays a high potential to enrich minor compounds with a higher yield, more flexibility and lower resin cost.

6.
J Hazard Mater ; 417: 126108, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020352

RESUMO

Coronavirus Diseases 2019 (COVID-19) pandemic has a huge impact on the plastic waste management in many countries due to the sudden surge of medical waste which has led to a global waste management crisis. Improper management of plastic waste may lead to various negative impacts on the environment, animals, and human health. However, adopting proper waste management and the right technologies, looking in a different perception of the current crisis would be an opportunity. About 40% of the plastic waste ended up in landfill, 25% incinerated, 16% recycled and the remaining 19% are leaked into the environment. The increase of plastic wastes and demand of plastic markets serve as a good economic indicator for investor and government initiative to invest in technologies that converts plastic waste into value-added product such as fuel and construction materials. This will close the loop of the life cycle of plastic waste by achieving a sustainable circular economy. This review paper will provide insight of the state of plastic waste before and during the COVID-19 pandemic. The treatment pathway of plastic waste such as sterilisation technology, incineration, and alternative technologies available in converting plastic waste into value-added product were reviewed.


Assuntos
COVID-19 , Gerenciamento de Resíduos , Animais , Humanos , Pandemias , Plásticos , SARS-CoV-2
7.
Biotechnol Biofuels ; 14(1): 87, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827663

RESUMO

Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.

8.
J Biosci Bioeng ; 129(3): 327-332, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31585857

RESUMO

In this study, the bacterial lipoxygenase (LOX) gene from Pseudomonas aeruginosa ATCC27853 (pse-LOX) was cloned, sequenced and heterologous expressed in Escherichia coli by auto-induction expression strategy. Production of the recombinant pse-LOX (pse-rLOX) gene up to 23,850 U/mL (264 mg pure protein/L bacterial culture fluid) was observed in the end of this process. To the best of our knowledge, this is the first attempt to manipulate LOX heterologous expression process using auto-induction expression approach, and it is the highest production of recombinant LOX compared with other reports. Subsequently, the resulted pse-rLOX was proved to efficiently degrade triphenylmethane dyes such as malachite green, brilliant green and aniline blue. Generally, an overproduction of the LOX from P. aeruginosa was observed in E. coli, and this recombinant gene is a potential candidate as biocatalyst for triphenylmethane dyes decolorization.


Assuntos
Corantes/metabolismo , Escherichia coli/metabolismo , Lipoxigenase/metabolismo , Pseudomonas aeruginosa/enzimologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Lipoxigenase/genética , Pseudomonas aeruginosa/genética
9.
Front Chem ; 7: 201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001522

RESUMO

Nowadays, downstream bioprocessing industries inclines towards the development of a green and high efficient bioseparation technology. Betacyanins are presently gaining higher interest in the food science as driven by their high tinctorial strength and health promoting functional properties. In this study, a novel green integration process of liquid biphasic electric partitioning system (LBEPS) was proposed for betacyanins extraction from peel and flesh of red-purple pitaya. Initially, the betacyanins extraction using LBEPS with initial settings was compared with that of liquid biphasic partitioning system (LBPS), and the results revealed that both systems demonstrated a comparable betacyanins extraction. This was followed by further optimizing the LBEPS for better betacyanins extraction. Several operating parameters including operation time, voltage applied, and position of graphitic electrodes in the system were investigated. Moreover, comparison between optimized LBEPS and LBPS with optimized conditions of electric system (as post-treatment) as well as color characterization and antioxidant properties assessment were conducted. Overall, the betacyanins extraction employing the optimized LBEPS showed the significant highest values of betacyanins concentration in alcohol-rich top phase (C t ) and partition coefficient (K) of betacyanins from peel (99.256 ± 0.014% and 133.433 ± 2.566) and flesh (97.189 ± 0.172% and 34.665 ± 2.253) of red-purple pitaya. These results inferred that an optimal betacyanins extraction was successfully achieved by this approach. Also, the LBEPS with the peel and flesh showed phase volume ratio (V r ) values of 1.667 and 2.167, respectively, and this indicated that they have a clear biphasic separation. In addition, the peel and flesh extract obtained from the optimized LBEPS demonstrated different variations of red color as well as their antioxidant properties were well-retained. This article introduces a new, reliable, and effective bioseparation approach for the extraction of biomolecules, which is definitely worth to explore further as a bioseparation tool in the downstream bioprocessing.

10.
Environ Monit Assess ; 191(4): 227, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30887225

RESUMO

Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation-anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving "3Rs" of reduce, reuse, and recycle approach.


Assuntos
Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Reatores Biológicos , Dióxido de Carbono , Desnitrificação , Metano , Nitrificação , Nitrogênio , Oxirredução , Resíduos Sólidos
11.
Bioresour Technol ; 271: 30-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30261334

RESUMO

Microalgae biorefinery is presently receiving a lot of attention as driven by its production of high value-added products. In this study, an oleaginous microalga Aurantiochytrium limacinum SR21 was cultured for docosahexaenoic acid (DHA) production using 20% (w/v) of K2HPO4-waste feedstock to replace 0.005% (w/v) of KH2PO4 in the flask culture. DHA is an essential nutrient for human's brain functionalities. Collectively, the K2HPO4-waste feedstock with working concentration of 0.005% (w/v) in the cultivation prompted a higher lipid content (8.29%) and DHA production (128.81 mg.L-1). Moreover, natural plant pigment products containing stabilised betacyanins were utilised as natural red colourants for hard candy production. This study develops microalgal cultivation using salt-rich waste feedstock for a higher lipid and DHA content as well as application of natural colouring agents in food products.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Alimentos , Cloreto de Sódio/farmacologia , Estramenópilas/metabolismo , Cor , Estramenópilas/efeitos dos fármacos
12.
J Biosci Bioeng ; 127(2): 150-159, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30224189

RESUMO

Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.


Assuntos
Indústria de Laticínios , Hidrogênio/metabolismo , Esgotos/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Animais , Técnicas de Cultura Celular por Lotes/métodos , Biocatálise , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Bovinos , Entropia , Ácidos Graxos Voláteis/biossíntese , Fermentação , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...