Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(46): 15742-15753, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32913123

RESUMO

ADAMTSL2 mutations cause an autosomal recessive connective tissue disorder, geleophysic dysplasia 1 (GPHYSD1), which is characterized by short stature, small hands and feet, and cardiac defects. ADAMTSL2 is a matricellular protein previously shown to interact with latent transforming growth factor-ß binding protein 1 and influence assembly of fibrillin 1 microfibrils. ADAMTSL2 contains seven thrombospondin type-1 repeats (TSRs), six of which contain the consensus sequence for O-fucosylation by protein O-fucosyltransferase 2 (POFUT2). O-fucose-modified TSRs are subsequently elongated to a glucose ß1-3-fucose (GlcFuc) disaccharide by ß1,3-glucosyltransferase (B3GLCT). B3GLCT mutations cause Peters Plus Syndrome (PTRPLS), which is characterized by skeletal defects similar to GPHYSD1. Several ADAMTSL2 TSRs also have consensus sequences for C-mannosylation. Six reported GPHYSD1 mutations occur within the TSRs and two lie near O-fucosylation sites. To investigate the effects of TSR glycosylation on ADAMTSL2 function, we used MS to identify glycan modifications at predicted consensus sequences on mouse ADAMTSL2. We found that most TSRs were modified with the GlcFuc disaccharide at high stoichiometry at O-fucosylation sites and variable mannose stoichiometry at C-mannosylation sites. Loss of ADAMTSL2 secretion in POFUT2-/- but not in B3GLCT-/- cells suggested that impaired ADAMTSL2 secretion is not responsible for skeletal defects in PTRPLS patients. In contrast, secretion was significantly reduced for ADAMTSL2 carrying GPHYSD1 mutations (S641L in TSR3 and G817R in TSR6), and S641L eliminated O-fucosylation of TSR3. These results provide evidence that abnormalities in GPHYSD1 patients with this mutation are caused by loss of O-fucosylation on TSR3 and impaired ADAMTSL2 secretion.


Assuntos
Proteínas ADAMTS/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Proteínas da Matriz Extracelular/metabolismo , Deformidades Congênitas dos Membros/patologia , Proteínas ADAMTS/química , Proteínas ADAMTS/genética , Sequência de Aminoácidos , Animais , Doenças do Desenvolvimento Ósseo/genética , Sistemas CRISPR-Cas/genética , Dissacarídeos/química , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Fucosiltransferases/deficiência , Fucosiltransferases/genética , Edição de Genes , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Células HEK293 , Humanos , Deformidades Congênitas dos Membros/genética , Manose/química , Camundongos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
2.
J Clin Invest ; 128(5): 1985-1999, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29629904

RESUMO

Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and ß-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.


Assuntos
Células Epiteliais/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Vagina/imunologia , Vaginose Bacteriana/imunologia , Animais , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Camundongos , Camundongos Knockout , Infecções Estreptocócicas/patologia , Vagina/microbiologia , Vagina/patologia , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/patologia
3.
Nat Chem Biol ; 12(4): 240-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26854667

RESUMO

Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions.


Assuntos
Proteínas de Caenorhabditis elegans/química , Fucosiltransferases/química , Proteínas Recombinantes de Fusão/química , Trombospondina 1/química , Água/química , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Transfecção
4.
Glycobiology ; 23(2): 188-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23045360

RESUMO

Protein O-fucosyltransferase 1 (Pofut1) and protein O-fucosyltransferase 2 (Pofut2) add O-linked fucose at distinct consensus sequences in properly folded epidermal growth factor (EGF)-like repeats and thrombospondin type-1 (TSR) repeats, respectively. Glycan chain elongation past O-fucose can occur to yield a tetrasaccharide on EGF repeats and a disaccharide on TSRs. Elimination of Pofut1 in mice causes embryonic lethality with Notch-like phenotypes demonstrating that O-fucosylation of Notch is essential for its function. Similarly, elimination of Pofut2 results in an early embryonic lethal phenotype in mice, although the molecular mechanism for the lethality is unknown. The recent development of sugar analogs has revolutionized the study of glycans by providing a convenient method for labeling and tracking glycosylation. In order to study O-fucosylation, we took advantage of the recently developed reporter, 6-alkynyl fucose. Using the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), or "click" reaction, azido-biotin allows tagging and detection of 6AF-modified proteins. Here we examine whether proteins containing EGF repeats or TSRs with O-fucose consensus sequences are specifically modified with 6AF in cell culture. Using mass spectrometry (MS), we demonstrate that 6AF is efficiently incorporated onto the appropriate consensus sequences on EGF repeats and TSRs. Furthermore, the elongation of the O-fucose monosaccharide on EGF repeats and TSRs is not hampered when 6AF is used. These results show that 6AF is efficiently utilized in a truly bioorthogonal manner by Pofut1, Pofut2 and the enzymes that elongate O-fucose, providing evidence that 6AF is a significant new tool in the study of protein O-fucosylation.


Assuntos
Alcinos/química , Fator de Crescimento Epidérmico , Fucose , Fucosiltransferases , Trombospondina 1 , Sequência de Aminoácidos , Animais , Fator de Crescimento Epidérmico/análogos & derivados , Fator de Crescimento Epidérmico/química , Fucose/análogos & derivados , Fucose/química , Fucose/metabolismo , Fucosiltransferases/química , Fucosiltransferases/metabolismo , Glicosilação , Camundongos , Processamento de Proteína Pós-Traducional , Sequências Repetitivas de Aminoácidos , Transdução de Sinais , Trombospondina 1/química , Trombospondina 1/metabolismo
5.
Methods Enzymol ; 480: 401-16, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20816219

RESUMO

Thrombospondin type 1 repeats (TSRs) are small cysteine-rich motifs with three conserved disulfide bonds originally described as modules in the thrombospondins. Since then, TSRs have been found as tandem repeats in a wide variety of secreted and cell-surface proteins of diverse function. TSRs in many contexts are known to bind a variety of receptors and have antiangiogenic capabilities. They can be modified with O-linked fucose on serine/threonine found in the consensus, CX(2-3)(S/T)CX(2)G. Here we review what is known about O-fucosylation of TSRs and describe in detail mass spectral methods to map sites of O-fucosylation on proteins containing TSRs. These methods include techniques to identify glycosylated peptides and the relative amounts of elongated products by electrospray ionization mass spectrometry of glycopeptides.


Assuntos
Fucose/metabolismo , Sequências Repetitivas de Aminoácidos , Trombospondinas/química , Trombospondinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cromatografia Líquida/métodos , Glicosilação , Humanos , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional
6.
Dev Biol ; 346(1): 25-38, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20637190

RESUMO

Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene-trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling.


Assuntos
Células Epiteliais/citologia , Fucosiltransferases/fisiologia , Gastrulação , Camadas Germinativas/citologia , Mesoderma/citologia , Trombospondinas/metabolismo , Animais , Diferenciação Celular , Células Endoteliais/citologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fucose/metabolismo , Humanos , Masculino , Camundongos , Gravidez , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
7.
J Biol Chem ; 284(44): 30004-15, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19671700

RESUMO

Protein C-mannosylation is the attachment of alpha-mannopyranose to tryptophan via a C-C linkage. This post-translational modification typically occurs within the sequence motif WXXW, which is frequently present in thrombospondin type-1 repeats (TSRs). TSRs are especially numerous in and a defining feature of the ADAMTS superfamily. We investigated the presence and functional significance of C-mannosylation of ADAMTS-like 1/punctin-1, which contains four TSRs (two with predicted C-mannosylation sites), using mass spectrometry, metabolic labeling, site-directed mutagenesis, and expression in C-mannosylation-defective Chinese hamster ovary cell variants. Analysis of tryptic fragments of recombinant human punctin-1 by mass spectrometry identified a peptide derived from TSR1 containing the (36)WDAWGPWSECSRTC(49) sequence of interest modified with two mannose residues and a Glc-Fuc disaccharide (O-fucosylation). Tandem mass spectrometry (MS/MS) and MS/MS/MS analysis demonstrated the characteristic cross-ring cleavage of C-mannose and identified the modified residues as Trp(39) and Trp(42). C-Mannosylation of TSR1 of the related protease ADAMTS5 was also identified. Metabolic labeling of CHO-K1 cells or Lec35.1 cells demonstrated incorporation of d-[2,6-(3)H]mannose in secreted punctin-1 from CHO-K1 cells but not Lec35.1 cells. Quantitation of punctin-1 secretion in Lec35.1 cells versus CHO-K1 cells suggested decreased secretion in Lec35.1 cells. Replacement of mannosylated Trp residues in TSR1 with either Ala or Phe affected punctin secretion efficiency. These data demonstrate that TSR1 from punctin-1 carries C-mannosylation in close proximity to O-linked fucose. Together, these modifications appear to provide a quality control mechanism for punctin-1 secretion.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Trombospondina 1/metabolismo , Triptofano/metabolismo , Proteínas ADAMTS , Substituição de Aminoácidos , Animais , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Fucose , Glicosilação , Humanos , Sequências Repetitivas de Ácido Nucleico , Trombospondina 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...