Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(19): 198201, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243654

RESUMO

Glasses obtained from vapor deposition on a cold substrate have superior thermodynamic and kinetic stability with respect to ordinary glasses. Here we perform molecular dynamics simulations of vapor deposition of a model glassformer and investigate the origin of its high stability compared to that of ordinary glasses. We find that the vapor deposited glass is characterized by locally favored structures (LFSs) whose occurrence correlates with its stability, reaching a maximum at the optimal deposition temperature. The formation of LFSs is enhanced near the free surface, hence supporting the idea that the stability of vapor deposited glasses is connected to the relaxation dynamics at the surface.

2.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175107

RESUMO

The separation of liquid mixture components is relevant to many applications-ranging from water purification to biofuel production-and is a growing concern related to the UN Sustainable Development Goals (SDGs), such as "Clean water and Sanitation" and "Affordable and clean energy". One promising technique is using graphene slit-pores as filters, or sponges, because the confinement potentially affects the properties of the mixture components in different ways, favoring their separation. However, no systematic study has shown how the size of a pore changes the thermodynamics of the surrounding mixture. Here, we focus on water-methanol mixtures and explore, using Molecular Dynamics simulations, the effects of a graphene pore, with size ranging from 6.5 to 13 Å, for three compositions: pure water, 90%-10%, and 75%-25% water-methanol. We show that tuning the pore size can change the mixture pressure, density and composition in bulk due to the size-dependent methanol sequestration within the pore. Our results can help in optimizing the graphene pore size for filtering applications.

3.
Rep Prog Phys ; 85(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34905739

RESUMO

Empty liquids represent a wide class of materials whose constituents arrange in a random network through reversible bonds. Many key insights on the physical properties of empty liquids have originated almost independently from the study of colloidal patchy particles on one side, and a large body of theoretical and experimental research on water on the other side. Patchy particles represent a family of coarse-grained potentials that allows for a precise control of both the geometric and the energetic aspects of bonding, while water has arguably the most complex phase diagram of any pure substance, and a puzzling amorphous phase behavior. It was only recently that the exchange of ideas from both fields has made it possible to solve long-standing problems and shed new light on the behavior of empty liquids. Here we highlight the connections between patchy particles and water, focusing on the modelling principles that make an empty liquid behave like water, including the factors that control the appearance of thermodynamic and dynamic anomalies, the possibility of liquid-liquid phase transitions, and the crystallization of open crystalline structures.

4.
ACS Nano ; 15(12): 19864-19876, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34807577

RESUMO

Nanoconfinement can drastically change the behavior of liquids, puzzling us with counterintuitive properties. It is relevant in applications, including decontamination and crystallization control. However, it still lacks a systematic analysis for fluids with different bulk properties. Here we address this gap. We compare, by molecular dynamics simulations, three different liquids in a graphene slit pore: (1) A simple fluid, such as argon, described by a Lennard-Jones potential; (2) an anomalous fluid, such as a liquid metal, modeled with an isotropic core-softened potential; and (3) water, the prototypical anomalous liquid, with directional HBs. We study how the slit-pore width affects the structure, thermodynamics, and dynamics of the fluids. All the fluids show similar oscillating properties by changing the pore size. However, their free-energy minima are quite different in nature: (i) are energy-driven for the simple liquid; (ii) are entropy-driven for the isotropic core-softened potential; and (iii) have a changing nature for water. Indeed, for water, the monolayer minimum is entropy driven, at variance with the simple liquid, while the bilayer minimum is energy driven, at variance with the other anomalous liquid. Also, water has a large increase in diffusion for subnm slit pores, becoming faster than bulk. Instead, the other two fluids have diffusion oscillations much smaller than water, slowing down for decreasing slit-pore width. Our results, clarifying that water confined at the subnm scale behaves differently from other (simple or anomalous) fluids under similar confinement, are possibly relevant in nanopores applications, for example, in water purification from contaminants.

5.
J Chem Phys ; 153(10): 104503, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933306

RESUMO

The origin of water anomalies hides in an experimentally inaccessible region of the phase diagram known as no-man's land, bounded at low temperature by the domain of stability of amorphous glasses, and at high temperature by the homogeneous nucleation line, below which liquid water loses its metastability. The existence of at least two different forms of glass on one side, i.e., the low-density amorphous (LDA) and the high-density amorphous (HDA) ices, and of one anomalous liquid on the other side, points to a hidden connection between these states, whose understanding has the potential to uncover what happens in no-man's land and shed light on the complex nature of water's behavior. Here, we develop a Neural Network scheme capable of discerning local structures beyond tetrahedrality. Applied over a wide region of the water's phase diagram, we show that the local structures that characterize both LDA and HDA amorphous phases are indeed embedded in the supercooled liquid phase. Remarkably, the rapid increase in the LDA-like population with supercooling occurs in the same temperature and pressure region where thermodynamic fluctuations are maximized, linking these structures with water's anomalies. At the same time, the population of HDA-like environments rapidly increases with pressure, becoming the majority component at high density. Our results show that both LDA and HDA are genuine glasses, and provide a microscopic connection between the non-equilibrium and equilibrium phase diagrams of water.

6.
J Chem Phys ; 151(4): 044505, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370527

RESUMO

With numerical simulations of the mW model of water, we investigate the energetic stability of crystalline clusters both for Ice I (cubic and hexagonal ice) and for the metastable Ice 0 phase as a function of the cluster size. Under a large variety of forming conditions, we find that the most stable cluster changes as a function of size: at small sizes, the Ice 0 phase produces the most stable clusters, while at large sizes, there is a crossover to Ice I clusters. We further investigate the growth of crystalline clusters with the seeding technique and study the growth patterns of different crystalline clusters. While energetically stable at small sizes, the growth of metastable phases (cubic and Ice 0) is hindered by the formation of coherent grain boundaries. A fivefold symmetric twin boundary for cubic ice, and a newly discovered coherent grain boundary in Ice 0, promotes cross nucleation of cubic ice. Our work reveals that different local structures can compete with the stable phase in mW water and that the low energy cost of particular grain boundaries might play an important role in polymorph selection.

7.
Entropy (Basel) ; 20(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33265213

RESUMO

We study two-dimensional triangular-network models, which have degenerate ground states composed of straight or randomly-zigzagging stripes and thus sub-extensive residual entropy. We show that attraction is responsible for the inversion of the stable phase by changing the entropy of fluctuations around the ground-state configurations. By using a real-space shell-expansion method, we compute the exact expression of the entropy for harmonic interactions, while for repulsive harmonic interactions we obtain the entropy arising from a limited subset of the system by numerical integration. We compare these results with a three-dimensional triangular-network model, which shows the same attraction-mediated selection mechanism of the stable phase, and conclude that this effect is general with respect to the dimensionality of the system.

8.
Phys Rev Lett ; 118(21): 218002, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598639

RESUMO

We show how including attraction in interparticle interactions reverses the effect of fluctuations in ordering of a prototypical artificial frustrated system. Buckled colloidal monolayers exhibit the same ground state as the Ising antiferromagnet on a deformable triangular lattice, but it is unclear if ordering in the two systems is driven by the same geometric mechanism. By a real-space expansion we find that, for buckled colloids, bent stripes constitute the stable phase, whereas in the Ising antiferromagnet straight stripes are favored. For generic pair potentials we show that attraction governs this selection mechanism, in a manner that is linked to local packing considerations. This supports the geometric origin of entropy in jammed sphere packings and provides a tool for designing self-assembled colloidal structures.

9.
Phys Rev E ; 94(6-1): 062604, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085471

RESUMO

We study via molecular-dynamics simulations the thermodynamics of an anomalous fluid confined in a slit pore with one wall structured and attractive and another unstructured and repulsive. We find that the phase diagram of the homogeneous part of the confined fluid is shifted to higher temperatures, densities, and pressures with respect to the bulk, but it can be rescaled on the bulk case. We calculate a moderate increase of mobility of the homogeneous confined fluid that we interpret as a consequence of the layering due to confinement and the collective modes due to long-range correlations. We show that, as in bulk, the confined fluid has structural, diffusion, and density anomalies that order in the waterlike hierarchy, and a liquid-liquid critical point (LLCP). The overall anomalous region moves to higher temperatures, densities, and pressure, and the LLCP displaces to higher temperature compared to bulk. Motivated by experiments, we calculate also the phase diagram not just for the homogeneous part of the confined fluid but for the entire fluid in the pore, and we show that it is shifted toward higher pressures but preserves the thermodynamics, including the LLCP. Because our model has waterlike properties, we argue that in experiments with supercooled water confined in slit pores with a width of >3 nm if hydrophilic and of >1.5 nm if hydrophobic, the existence of the LLCP could be easier to test than in bulk, where it is not directly accessible.

10.
J Chem Phys ; 141(17): 174501, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381525

RESUMO

Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer ("templating" effect). In turn, the first layer induces a "molding" effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.

11.
Artigo em Inglês | MEDLINE | ID: mdl-25353478

RESUMO

Metallic alloys, such as Al and Cu or mild steel, display plastic instabilities in a well-defined range of temperatures and deformation rates, a phenomenon known as the Portevin-Le Chatelelier effect. The stick-slip behavior, or serration, typical of this effect is due to the discontinuous motion of dislocations as they interact with solute atoms. Here we study a simple model of interacting dislocations and show how the classical Einstein fluctuation-dissipation relation can be used to define the temperature over a range of model parameters and to construct a phase diagram of serration that can be compared to experimental results. Furthermore, by performing analytic calculations and numerically integrating the equations of motion, we clarify the crucial role played by dislocation mutual interactions in serration.

13.
Phys Rev Lett ; 102(11): 115502, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19392213

RESUMO

We study the growth of a slip line in a plastically deforming crystal by numerical simulation of a double-ended pileup model with a dislocation source at one end, and an absorbing wall at the other end. In the presence of defects, the pileup undergoes a continuous nonequilibrium phase transition as a function of stress, which can be characterized by finite-size scaling. We obtain a complete set of critical exponents and scaling functions that describe the spatiotemporal dynamics of the slip line. Our findings allow us to reinterpret earlier experiments on slip line kinematography as evidence of a dynamic critical phenomenon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...