Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(7): e1105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040024

RESUMO

Interactions between proteins and small molecules or nucleic acids play a pivotal role in numerous biological processes critical for human health and are fundamental for advancing our understanding of biological systems. Proteins are the workhorses of the cell, executing various functions ranging from catalyzing biochemical reactions to transmitting signals within the body. Small molecules, including drugs and metabolites, can modulate protein activity, thereby impacting cellular processes and disease pathways. Similarly, nucleic acids, such as DNA and RNA, regulate protein synthesis and function through intricate interactions. Understanding these interactions is crucial for drug discovery and development and can shed light on gene regulation, transcriptional control, and RNA processing, providing insights into genetic diseases and developmental disorders. Moreover, studying protein-small molecule and protein-nucleic acid interactions enhances our comprehension of fundamental biological mechanisms. A wide array of methods to study these interactions range in cost, sensitivity, materials usage, throughput, and complexity. Notably in the last decade, new techniques have been developed that enhance our understanding of these interactions. In this review, we aim to summarize the new state-of-the-art methods for detecting interactions between proteins and small molecules or nucleic acids, as well as discuss older methods that still hold value today. © 2024 Wiley Periodicals LLC.


Assuntos
Ácidos Nucleicos , Proteínas , Proteínas/metabolismo , Proteínas/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Humanos , RNA/metabolismo , RNA/genética , Ligação Proteica , DNA/metabolismo , DNA/química , DNA/genética
2.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168343

RESUMO

Despite recent advances in the mechanism of oxidized DNA activating NLRP3, the molecular mechanism and consequence of oxidized DNA associating with NLRP3 remains unknown. Cytosolic NLRP3 binds oxidized DNA which has been released from the mitochondria, which subsequently triggers inflammasome activation. Human glycosylase (hOGG1) repairs oxidized DNA damage which inhibits inflammasome activation. The fold of NLRP3 pyrin domain contains amino acids and a protein fold similar to hOGG1. Amino acids that enable hOGG1 to bind and cleave oxidized DNA are conserved in NLRP3. We found NLRP3 could bind and cleave oxidized guanine within mitochondrial DNA. The binding of oxidized DNA to NLRP3 was prevented by small molecule drugs which also inhibit hOGG1. These same drugs also inhibited inflammasome activation. Elucidating this mechanism will enable design of drug memetics that treat inflammasome pathologies, illustrated herein by NLRP3 pyrin domain inhibitors which suppressed interleukin-1ß (IL-1ß) production in macrophages. One-Sentence Summary: NLRP3 cleaves oxidized DNA and small molecule drug binding inhibits inflammasome activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...