Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1863(1): 39-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268730

RESUMO

BACKGROUND: Vitamin K (VK) is a fat-soluble vitamin known for its essential role in blood coagulation, but also on other biological processes (e.g. reproduction, brain and bone development) have been recently suggested. Nevertheless, the molecular mechanisms behind its particular function on reproduction are not yet fully understood. METHODS: The potential role of VK on reproduction through nutritional supplementation in Senegalese sole (Solea senegalensis) was assessed by gonadal maturation and 11-ketosterone, testosterone and estriol plasma levels when fed with control or VK supplemented (1250 mg kg-1 of VK1) diets along a six month trial. At the end, sperm production and quality (viability and DNA fragmentation) were evaluated. Circulating small non-coding RNAs (sncRNAs) in blood plasma from males were also studied through RNA-Seq. RESULTS: Fish fed with dietary VK supplementation had increased testosterone levels and lower sperm DNA fragmentation. SncRNAs from blood plasma were found differentially expressed when nutritional and sperm quality conditions were compared. PiR-675//676//4794//5462 and piR-74614 were found up-regulated in males fed with dietary VK supplementation. Let-7g, let-7e(18nt), let-7a-1, let-7a-3//7a-2//7a-1, let-7e(23nt) and piR-675//676//4794//5462 were found to be up-regulated and miR-146a and miR-146a-1//146a-2//146a-3 down-regulated when fish with low and high sperm DNA fragmentation were compared. Bioinformatic analyses of predicted mRNAs targeted by sncRNAs revealed the potential underlying pathways. CONCLUSIONS: VK supplementation improves fish gonad maturation and sperm quality, suggesting an unexpected and complex regulation of the nutritional status and reproductive performance through circulating sncRNAs. GENERAL SIGNIFICANCE: The use of circulating sncRNAs as reliable and less-invasive physiological biomarkers in fish nutrition and reproduction has been unveiled.


Assuntos
Biomarcadores/sangue , MicroRNAs/sangue , Pequeno RNA não Traduzido/genética , Reprodução , Espermatozoides/metabolismo , Testosterona/sangue , Vitamina K/fisiologia , Ração Animal , Animais , Sobrevivência Celular , Fragmentação do DNA , Dieta , Suplementos Nutricionais , Regulação para Baixo , Linguados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Transdução de Sinais
2.
Fish Physiol Biochem ; 40(3): 731-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24185858

RESUMO

The occurrence of a second osteocalcin (OC2) has been reported in teleost fish, where it coexists with OC1 in some species. While it has been proposed that OC2 gene originated from OC1 through the fish whole-genome duplication event, little information is available on its molecular function and physiological role. The present study brings biological data supporting the presence of OC2 in the mineral phase of teleost fish bone and its association with the mineral phase together with OC1. The occurrence of OC2 forms with different levels of phosphorylation or γ-carboxylation, and with amino acid substitutions was observed. Comparative analysis of mature peptide sequences revealed the high conservation existing between OC1 and OC2, in particular within the core γ-carboxyglutamic acid domain, and suggests that both protein forms may have the same function, i.e., binding of calcium ions or hydroxyapatite crystals.


Assuntos
Osso e Ossos/metabolismo , Cálcio/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Osteocalcina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Peixes/análise , Linguados , Dados de Sequência Molecular , Oncorhynchus mykiss , Osteocalcina/análise , Isoformas de Proteínas/química , Dourada
3.
J Steroid Biochem Mol Biol ; 140: 34-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291400

RESUMO

Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 µM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36-59% in VSa13 and 17-46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50-62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11-57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner.


Assuntos
Osso e Ossos/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Tretinoína/farmacologia , Animais , Proteínas de Ligação ao Cálcio/biossíntese , Linhagem Celular , Proteínas da Matriz Extracelular/biossíntese , Expressão Gênica/efeitos dos fármacos , Osteocalcina/biossíntese , Receptores do Ácido Retinoico/biossíntese , Receptores X de Retinoides/biossíntese , Dourada , Proteína de Matriz Gla
4.
Differentiation ; 84(3): 240-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22903186

RESUMO

Embryonic stem (ES) cells are a promising tool for generation of transgenic animals and an ideal experimental model for in vitro studies of embryonic cell development, differentiation and gene manipulation. Here we report the development and initial characterization of a pluripotent embryonic stem like cell line, designated as ESSA1, derived from blastula stage embryos of the gilthead seabream (Sparus aurata, L). ESSA1 cells are cultured in Leibovitz's L-15 medium supplemented with 5% fetal bovine serum and, unlike other ES cells, without a feeder layer. They have a round or polygonal morphology, grow exponentially in culture and form dense colonies. ESSA1 cells also exhibit intense alkaline phosphatase activity, normal karyotype and are positive for stage-specific embryonic antigen-1 (SSEA1) and octamer-binding transcription factor 4 (Oct4) markers for up to 30 passages. Upon treatment with all-trans retinoic acid, ESSA1 cells differentiate into neuron-like, oligodendritic, myocyte and melanocyte cells; they can also form embryoid bodies when seeded in bacteriological plates, a characteristic usually associated with pluripotency. The capacity of ESSA1 cells to differentiate into osteoblastic, chondroblastic or osteoclastic cell lineages and to produce a mineralized extracellular matrix in vitro was demonstrated through histochemical techniques and further confirmed by immunocytochemistry using lineage-specific markers. Furthermore, ESSA1 cells can be used to produce chimera, where they contribute to the development of a variety of tissues including the trunk and gut of zebrafish embryos and fry. Thus, ESSA1 cells represent a promising model for investigating bone-lineage cell differentiation in fish and also highlight the potential of piscine stem cell research.


Assuntos
Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais/citologia , Dourada/embriologia , Animais , Blástula/citologia , Condrócitos/citologia , Osteoblastos/citologia , Osteoclastos/citologia , Células-Tronco Pluripotentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...