Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392111

RESUMO

A new bio-inspired metaheuristic algorithm named the Pufferfish Optimization Algorithm (POA), that imitates the natural behavior of pufferfish in nature, is introduced in this paper. The fundamental inspiration of POA is adapted from the defense mechanism of pufferfish against predators. In this defense mechanism, by filling its elastic stomach with water, the pufferfish becomes a spherical ball with pointed spines, and as a result, the hungry predator escapes from this threat. The POA theory is stated and then mathematically modeled in two phases: (i) exploration based on the simulation of a predator's attack on a pufferfish and (ii) exploitation based on the simulation of a predator's escape from spiny spherical pufferfish. The performance of POA is evaluated in handling the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that POA has achieved an effective solution with the appropriate ability in exploration, exploitation, and the balance between them during the search process. The quality of POA in the optimization process is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that POA provides superior performance by achieving better results in most of the benchmark functions in order to solve the CEC 2017 test suite compared to competitor algorithms. Also, the effectiveness of POA to handle optimization tasks in real-world applications is evaluated on twenty-two constrained optimization problems from the CEC 2011 test suite and four engineering design problems. Simulation results show that POA provides effective performance in handling real-world applications by achieving better solutions compared to competitor algorithms.

2.
Biomimetics (Basel) ; 8(8)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38132558

RESUMO

In this paper, a new bio-inspired metaheuristic algorithm called Giant Armadillo Optimization (GAO) is introduced, which imitates the natural behavior of giant armadillo in the wild. The fundamental inspiration in the design of GAO is derived from the hunting strategy of giant armadillos in moving towards prey positions and digging termite mounds. The theory of GAO is expressed and mathematically modeled in two phases: (i) exploration based on simulating the movement of giant armadillos towards termite mounds, and (ii) exploitation based on simulating giant armadillos' digging skills in order to prey on and rip open termite mounds. The performance of GAO in handling optimization tasks is evaluated in order to solve the CEC 2017 test suite for problem dimensions equal to 10, 30, 50, and 100. The optimization results show that GAO is able to achieve effective solutions for optimization problems by benefiting from its high abilities in exploration, exploitation, and balancing them during the search process. The quality of the results obtained from GAO is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that GAO presents superior performance compared to competitor algorithms by providing better results for most of the benchmark functions. The statistical analysis of the Wilcoxon rank sum test confirms that GAO has a significant statistical superiority over competitor algorithms. The implementation of GAO on the CEC 2011 test suite and four engineering design problems show that the proposed approach has effective performance in dealing with real-world applications.

3.
PeerJ ; 11: e16109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842052

RESUMO

Background: Early maturity in spring bread wheat is highly desirable in the regions where it enables the plants to evade high temperatures and plant pathogens at the end of the growing season. Methods: To reveal the genetic loci responsible for the maturity time association analysis was carried out based on phenotyping for an 11-year period and high-throughput SNP genotyping of a panel of the varieties contrasting for this trait. The expression of candidate genes was verified using qPCR. The association between the SNP markers and the trait was validated using the biparental F2:3 population. Results: Our data showed that under long-day conditions, the period from seedling to maturity is mostly influenced by the time from heading to maturity, rather than the heading time. The QTLs associated with the trait were located on 2A, 3B, 4A, 5B, 7A and 7B chromosomes with the 7BL locus being the most significant and promising for its SNPs accelerated the maturity time by about 9 days. Gene dissection in this locus detected a number of candidates, the best being TraesCS7B02G391800 (bZIP9) and TraesCS7B02G412200 (photosystem II reaction center). The two genes are predominantly expressed in the flag leaf while flowering. The effect of the SNPs was verified in F2:3 population and confirmed the association of the 4A, 5B and 7BL loci with the maturity time.


Assuntos
Pão , Triticum , Mapeamento Cromossômico , Triticum/genética , Estações do Ano , Locos de Características Quantitativas/genética
4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686111

RESUMO

The content and quality of gluten in wheat grain is a distinctive characteristic that determines the final properties of wheat flour. In this study, a genome-wide association study (GWAS) was performed on a wheat panel consisting of bread wheat varieties and the introgression lines (ILs) obtained via hybridization with tetraploid wheat relatives. A total of 17 stable quantitative trait nucleotides (QTNs) located on chromosomes 1D, 2A, 2B, 3D, 5A, 6A, 7B, and 7D that explained up to 21% of the phenotypic variation were identified. Among them, the QTLs on chromosomes 2A and 7B were found to contain three and six linked SNP markers, respectively. Comparative analysis of wheat genotypes according to the composition of haplotypes for the three closely linked SNPs of chromosome 2A indicated that haplotype TT/AA/GG was characteristic of ten ILs containing introgressions from T. timopheevii. The gluten content in the plants with TT/AA/GG haplotype was significantly higher than in the varieties with haplotype GG/GG/AA. Having compared the newly obtained data with the previously reported quantitative trait loci (QTLs) we inferred that the locus on chromosome 2A inherited from T. timopheevii is potentially novel. The introgression lines containing the new locus can be used as sources of genetic factors to improve the quality traits of bread wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Farinha , Melhoramento Vegetal , Locos de Características Quantitativas , Glutens/genética
5.
Plants (Basel) ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687266

RESUMO

Wheat is a cereal grain that plays an important role in the world's food industry. The identification of the loci that change the concentration of elements in wheat seeds is an important challenge nowadays especially for genomic selection and breeding of novel varieties. In this study, we performed a multivariate genome-wide association study (GWAS) of the seven traits-concentrations of Zn, Mg, Mn, Ca, Cu, Fe, and K in grain-of the Russian collection of common wheat Triticum aestivum (N = 149 measured in two years in two different fields). We replicated one known locus associated with the concentration of Zn (IAAV1375). We identified four novel loci-BS00022069_51 (associated with concentrations of Ca and K), RFL_Contig6053_3082 (associated with concentrations of Fe and Mn), Kukri_rep_c70864_329 (associated with concentrations of all elements), and IAAV8416 (associated with concentrations of Fe and Mn)-three of them were located near the genes TraesCS6A02G375400, TraesCS7A02G094800, and TraesCS5B02G325400. Our result adds novel information on the loci involved in wheat grain element contents and may be further used in genomic selection.

6.
Entropy (Basel) ; 24(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36010734

RESUMO

A central conundrum enshrouds biocognition: almost all such phenomena are inherently unstable and must be constantly controlled by external regulatory machinery to ensure proper function, in much the same sense that blood pressure and the 'stream of consciousness' require persistent delicate regulation for the survival of higher organisms. Here, we derive the Data Rate Theorem of control theory that characterizes such instability via the Rate Distortion Theorem of information theory for adiabatically stationary nonergodic systems. We then outline a novel approach to building new statistical tools for data analysis based on those theorems, focusing on groupoid symmetry-breaking phase transitions characterized by Fisher Zero analogs.

7.
Plants (Basel) ; 11(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161418

RESUMO

Most modern breeding programs aim to develop wheat (T. aestivum L.) varieties with a high grain protein content (GPC) due to its greater milling and cooking quality, and improved grain price. Here, we used a genome-wide association study (GWAS) to map single nucleotide polymorphisms (SNPs) associated with GPC in 93 spring bread wheat varieties developed by eight Russian Breeding Centers. The varieties were evaluated for GPC, grain weight per spike (GWS), and thousand-kernel weight (TKW) at six environments, and genotyped with 9351 polymorphic SNPs and two SNPs associated with the NAM-A1 gene. GPC varied from 9.8 to 20.0%, depending on the genotype and environment. Nearly 52% of the genotypes had a GPC > 14.5%, which is the threshold value for entry into high-class wheat varieties. Broad-sense heritability for GPC was moderate (0.42), which is due to the significant effect of environment and genotype × environment interactions. GWAS performed on mean GPC evaluated across six environments identified eleven significant marker-trait associations, of which nine were physically mapped on chromosome 6A. Screening of wheat varieties for allelic variants of the NAM-A1 gene indicated that 60% of the varieties contained the NAM-A1c allele, followed by 33% for NAM-A1d, and 5% for NAM-A1a alleles. Varieties with the NAM-A1d allele showed significantly (p < 0.01) smaller GPC than those with NAM-A1c and NAM-A1a. However, no significant differences between NAM-A1 alleles were observed for both GWS and TKW.

8.
Biomolecules ; 11(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944541

RESUMO

Heading time is an important agronomic trait affecting the adaptability and productivity of common wheat. In this study, 95 common wheat varieties from Russia and the late-maturing breeding line 'Velut' were tested for allelic diversity of genes having the strongest effect on heading. In this research, allelic variation at the Ppd-D1, Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 loci was tested. The Vrn-B1 and Vrn-B3 loci provided the largest contribution to genetic diversity. We found two novel allelic variants of the Vrn-B3 gene in the studied varieties. Ten varieties carried a 160 bp insertion in the promoter region, and the breeding line 'Velut' carried a 1617 bp insertion. These alleles were designated Vrn-B3e and Vrn-B3d, respectively. The analysis of the sequences showed the recent insertion of a retrotransposon homologous to the LTR retrotransposon (RLX_Hvul_Dacia_ RND-1) in the Vrn-B3d allele. Plants with the Vrn-B3e and the 'Velut' line with the Vrn-B3d allele headed later than the plants with the wild-type allele; among these plants, 'Velut' is the latest maturing wheat variety. Analysis of the gene expression of two groups of lines differing by the Vrn-B3 alleles (Vrn-B3d or vrn-B3) from the F2 population with 'Velut' as a parental line did not reveal a significant difference in the expression level between the groups. Additional research is required to study the reasons for the late maturation of the 'Velut' line. However, the studied wheat varieties could be used as a potential source of natural variation in genes controlling heading times.


Assuntos
Mutagênese Insercional , Fotoperíodo , Proteínas de Plantas/genética , Triticum/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Federação Russa , Estações do Ano , Triticum/genética
9.
Plants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065351

RESUMO

Understanding the genetic architecture of drought tolerance is of great importance for overcoming the negative impact of drought on wheat yield. Earlier, we discovered the critical role of chromosome 2A for the drought-tolerant status of wheat spring cultivar Saratovskaya 29. A set of 92 single-chromosome recombinant double haploid (SCRDH) lines were obtained in the genetic background of Saratovskaya 29. The lines carry fragments of chromosome 2A from the drought-sensitive cultivar Yanetzkis Probat. The SCRDH lines were used to identify regions on chromosome 2A associated with the manifestation of physiological and agronomical traits under distinct water supply, and to identify candidate genes that may be associated with adaptive gene networks in wheat. Genotyping was done with Illumina Infinium 15k wheat array using 590 SNP markers with 146 markers being polymorphic. In four identified regions of chromosome 2A, 53 out of 58 QTLs associated with physiological and agronomic traits under contrasting water supply were mapped. Thirty-nine candidate genes were identified, of which 18 were transcription factors. The region 73.8-78.1 cM included the largest number of QTLs and candidate genes. The variation in SNPs associated with agronomical and physiological traits revealed among the SCRDH lines may provide useful information for drought related marker-assisted breeding.

10.
BMC Plant Biol ; 20(Suppl 1): 135, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050873

RESUMO

BACKGROUND: Leaf rust (Puccinia triticina Eriks.) is one of the most dangerous diseases of common wheat worldwide. Three approaches: genome-wide association study (GWAS), marker-assisted selection (MAS) and phytopathological evaluation in field, were used for assessment of the genetic diversity of Russian spring wheat varieties on leaf rust resistance loci and for identification of associated molecular markers. RESULTS: The collection, consisting of 100 Russian varieties of spring wheat, was evaluated over three seasons for resistance to the native population of leaf rust specific to the West Siberian region of Russia. The results indicated that most cultivars showed high susceptibility to P. triticina, with severity ratings (SR) of 60S-90S, however some cultivars showed a high level of leaf rust resistance (SR < 20MR-R). Based on the results of genome-wide association studies (GWAS) performed using the wheat 15 K genotyping array, 20 SNPs located on chromosomes 6D, 6A, 6B, 5A, 1B, 2A, 2B and 7A were revealed to be associated with leaf rust resistance. Genotyping with markers developed for known leaf rust resistance genes showed that most of the varieties contain genes Lr1, Lr3a, Lr9, Lr10, Lr17a, Lr20, Lr26 and Lr34, which are not currently effective against the pathogen. In the genome of three wheat varieties, gene Lr6Ai = 2 inherited from Th. intermedium was detected, which provides complete protection against the rust pathogen. It has been suggested that the QTL mapped to the chromosome 5AS of wheat cultivar Tulaikovskaya-zolotistaya, Tulaikovskaya-10, Samsar, and Volgouralskaya may be a new, previously undescribed locus conferring resistance to leaf rust. Obtained results also indicate that chromosome 1BL of the varieties Sonata, Otrada-Sibiri, Tertsiya, Omskaya-23, Tulaikovskaya-1, Obskaya-14, and Sirena may contain an unknown locus that provides a resistance response to local population. CONCLUSIONS: This study provides new insights into the genetic basis of resistance to leaf rust in Russian spring wheat varieties. The SNPs significantly associated with leaf rust resistance can be used for the development and application of diagnostic markers in marker-assisted selection schemes.


Assuntos
Doenças das Plantas/genética , Puccinia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Federação Russa , Estações do Ano , Triticum/microbiologia
11.
BMC Plant Biol ; 20(Suppl 1): 201, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050882

RESUMO

BACKGROUND: Triticum kiharae (AtAtGGDD, 2n = 42) is of interest for the improvement of bread wheat as a source of high grain protein and gluten content, as well as resistance to many diseases. The use of T. kiharae for the improvement of T. aestivum L. is complicated by the fact that the homology degree of their genomes is low and this leads to an unbalanced set of chromosomes in the gametes of its first generations and the elimination of some genotypes. The aim of this study was to analyze the nature of alien introgressions and their effect on the cytological stability of hybrids obtained from crossing of bread wheat varieties with T. kiharae. RESULTS: Using C-banding, the presence of entire chromosomes of T. kiharae in the karyotypes of hybrid lines (intergenomic substitution 2G/2B), chromosome arms (centric translocation Т2AtS:2AL) and large inserts in the form of terminal translocations involving chromosomes of 1st, 3rd and 5th homoeologous groups of B- and G-genomes were found. Molecular markers revealed short introgression of T. kiharae into the genome of common wheat varieties. The highest introgression frequency was shown for 1A, 1B, 2A, 5B, and 6A chromosomes, while no foreign chromatin was detected in 4A and 4B chromosomes. A high level of cytological stability (a meiotic index of 88.18-93.0%) was noted for the majority of introgression lines. An exception was found for the lines containing the structural reorganization of chromosome 5B, affecting the main genes of chromosome synapsis in terms of their functioning. CONCLUSIONS: During the stabilization of hybrid karyotypes, the introgression of genetic material from T. kiharae into the genome of T. aestivum occurs in the form of short fragments detectable only by molecular markers and in the form of whole chromosomes (intergenomic substitution) and their large fragments (centric and terminal translocations). The level of cytological stability achieved in F10 by the majority of introgression lines ensures the formation of functional gametes sufficient for the successful reproduction of the obtained hybrids.


Assuntos
Introgressão Genética , Triticum/genética , Bandeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Técnicas Citológicas , Cariótipo , Repetições de Microssatélites , Translocação Genética
12.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630293

RESUMO

Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is a dangerous disease of common wheat worldwide. Development and cultivation of the varieties with genetic resistance is one of the most effective and environmentally important ways for protection of wheat against fungal pathogens. Field phytopathological screening and genome-wide association study (GWAS) were used for assessment of the genetic diversity of a collection of spring wheat genotypes on stem rust resistance loci. The collection consisting of Russian varieties of spring wheat and introgression lines with alien genetic materials was evaluated over three seasons (2016, 2017 and 2018) for resistance to the native population of stem rust specific to the West Siberian region of Russia. The results indicate that most varieties displayed from moderate to high levels of susceptibility to P. graminis; 16% of genotypes had resistance or immune response. In total, 13,006 single-nucleotide polymorphism (SNP) markers obtained from the Infinium 15K array were used to perform genome-wide association analysis. GWAS detected 35 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1A, 2A, 2B, 3B, 5A, 5B, 6A, 7A and 7B. The most significant associations were found on chromosomes 7A and 6A where known resistance genes Sr25 and Sr6Ai = 2 originated from Thinopyrum ssp. are located. Common wheat lines containing introgressed fragments from Triticum timopheevii and Triticum kiharae were found to carry Sr36 gene on 2B chromosome. It has been suggested that the quantitative trait loci (QTL) mapped to the chromosome 5BL may be new loci inherited from the T. timopheevii. It can be inferred that a number of Russian wheat varieties may contain the Sr17 gene, which does not currently provide effective protection against pathogen. This is the first report describing the results of analysis of the genetic factors conferring resistance of Russian spring wheat varieties to stem rust.


Assuntos
Resistência à Doença/genética , Puccinia/patogenicidade , Triticum/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Puccinia/genética , Locos de Características Quantitativas/genética , Federação Russa , Triticum/crescimento & desenvolvimento
14.
Front Genet ; 11: 581214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505423

RESUMO

Tan spot, caused by Pyrenophora tritici-repentis, is a serious foliar disease of wheat in Kazakhstan with reported yield losses as high as 50% during epidemic years. Here, we report the evaluation of a collection of 191 hexaploid spring and winter wheat lines for tan spot resistance and its underlying genetic architecture using genome-wide association study (GWAS). Our wheat collection comprised candidate varieties from Kazakhstan, Russia, and CIMMYT. It was genotyped using the DArTseq technology and phenotyped for resistance to tan spot at seedling and adult plant stages in Kazakhstan. DArTseq SNPs revealed high genetic diversity (average polymorphic information content = 0.33) in the panel and genome-wide linkage disequilibrium decay at 22 Mb (threshold r2 = 0.1). Principal component analysis revealed a clear separation of Eurasian germplasm from CIMMYT and IWWIP lines. GWAS identified 34 marker-trait associations (MTA) for resistance to tan spot and the amount of phenotypic variation explained by these MTA ranged from 4% to 13.7%. Our results suggest the existence of novel valuable resistant alleles on chromosomes 3BS, and 5DL and 6AL for resistance to Race 1 and Race 5, respectively, in addition to known genes tsn1 and tsc2. On chromosome 6AL, a genomic region spanning 3 Mb was identified conferring resistance to both Race 1 and Race 5. Epistatic interaction of associated loci was revealed on chromosomes 1B, 5B, 7B, 5A, and 6A contributing to additional variation of 3.2-11.7%. Twenty-five lines with the best allele combinations of SNPs associated with resistance to both races have been identified as candidates for future variety release and breeding. The results of the present study will be further validated in other independent genetic backgrounds to be able to use markers in breeding.

15.
BMC Plant Biol ; 16 Suppl 1: 8, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26821813

RESUMO

BACKGROUND: Variability of heading date may assist in wheat adaptation to local environments. Thereafter, discovery of new heading date determinants is important for cereal improvement. In this study we used common wheat cultivar Chinese Spring (CS) and the substitution line of CS with 5B chromosome from T. dicoccoides (CS-5Bdic), different in their heading date by two weeks, to detect determinants of heading date on 5B chromosome. RESULTS: The possible influence of the VRN-B1 gene, the most powerful regulator of flowering, located on 5B chromosome, to differences in heading time between CS and CS-5Bdic was studied. The sequencing of this gene from CS-5Bdic showed that an insertion of a nucleotide triplet produced an additional amino acid in the corresponding protein. No changes in the transcription levels of each homoeologous VRN-1 loci were found in CS-5Bdic by comparison with CS. To ascertain the loci determining heading date difference, a set of 116 recombinant inbred 5В chromosomal lines as a result of hybridization of CS with CS-5Bdic were developed and their heading dates were estimated. Using the Illumina Infinium 15 k Wheat platform, 379 5B-specific polymorphic markers were detected and a genetic map with 82 skeletal markers was constructed. Phenotype (heading date) - genotype association analysis revealed seventy eight markers in pericentromeric region of 5B chromosome significantly associated with heading date variation. Based on this estimation and synteny with model crop genomes we identified the three best candidate genes: WRKY, ERF/AP2 and FHY3/FAR1. CONCLUSIONS: We supposed that the difference in activity of WRKY, ERF/AP2 and/or FHY3/FAR1 transcription factors between CS and CS-5Bdic to be a probable reason for the observed difference in heading dates. Data obtained in this study provide a good basis for the subsequent investigation of heading time pathways in wheat.


Assuntos
Cromossomos de Plantas , Triticum/genética , Adaptação Fisiológica , Mapeamento Cromossômico , DNA de Plantas , Genes de Plantas , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcrição Gênica , Triticum/crescimento & desenvolvimento
16.
Funct Integr Genomics ; 6(1): 71-80, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15983785

RESUMO

The genomic organization of Triticum timopheevii (2n=28, AtAtGG) was compared with hexaploid wheat T. aestivum (2n=42, AABBDD) by comparative mapping using microsatellites derived from bread wheat. Genetic maps for the two crosses T. timopheevii var. timopheevii x T. timopheevii var. typica and T. timopheevii K-38555xT. militinae were constructed. On the first population, 121 loci were mapped, and on the second population 103 loci. The transferability of the wheat markers to T. timopheevii was generally better for the A genome-specific markers (76-78% produced amplification products; 26 and 29% were polymorphic) than for B genome-specific markers (54% produced amplification products; 14 and 16% were polymorphic). Of the D genome-specific markers, one third produced amplification products in T. timopheevii, but only 5 and 2% were polymorphic in the corresponding mapping populations. The maps constructed confirmed the previously described translocation between chromosome arms 6AtS and 1GS and revealed at least two yet unknown rearrangements on chromosomes 4At and 6At09. The presence of other translocations and rearrangements between T. timopheevii and T. aestivum was demonstrated by a variety of markers mapping to nonhomoeologous positions.


Assuntos
Rearranjo Gênico , Genes de Plantas , Genoma de Planta , Poliploidia , Translocação Genética , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas , Repetições de Microssatélites , Hibridização de Ácido Nucleico , Triticum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...