Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J AOAC Int ; 105(5): 1367-1389, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426930

RESUMO

BACKGROUND: The Thermo Scientific SureTect™ Listeria species PCR assay utilizes SolarisTM reagents for performing PCR for the rapid and specific detection of Listeria species in a broad range of foods and selected environmental surfaces. OBJECTIVE: To demonstrate reproducibility of the Thermo Scientific SureTect Listeria species PCR assay in a collaborative study using a challenging matrix, full-fat cottage cheese (25 g), to extend the scope of the method. METHODS: In the collaborative study, the candidate method was compared to the US Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Ch. 10 Listeria reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). The candidate method included its own confirmation procedure. Eighteen participants from 10 laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Statistical analysis was conducted according to the probability of detection (POD) statistical model. In addition, in order to extend the scope of the method, seven matrix studies were performed comparing the candidate method to the FDA/BAM reference method. One of these matrixes was also compared to the ISO 11290-1:2017 Microbiology of the food chain-Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp.-Part 1: Detection method reference method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated and the method demonstrated acceptable inter-laboratory reproducibility as determined in the collaborative evaluation. The two PCR instruments used in the study performed equivalently. All presumptive positives were confirmed via the alternative confirmation procedure. In the pre-collaborative studies, the results showed comparable performances between the candidate method and the reference method for all matrixes tested. CONCLUSION: Based on the data generated, the method demonstrated acceptable inter-laboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 25 g full-fat cottage cheese is known to be a challenging matrix to test. No unusual cross-contamination, or false-positive/negative data was reported, highlighting the ease of use, reproducibility, and robustness of the candidate method.


Assuntos
COVID-19 , Listeria , Teste para COVID-19 , Microbiologia de Alimentos , Humanos , Listeria/genética , Pandemias , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Estados Unidos
2.
J AOAC Int ; 105(4): 1069-1091, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35179597

RESUMO

BACKGROUND: The Thermo Scientific™ SureTect™ Listeria monocytogenes PCR Assay uses Solaris reagents for performing PCR for the rapid and specific detection of Listeria monocytogenes in a broad range of foods and selected environmental surfaces. OBJECTIVE: To demonstrate reproducibility of the SureTect Listeria monocytogenes PCR Assay in a collaborative study using a challenging matrix, full-fat cottage cheese (25 g). To extend the scope of the method. METHOD: In the collaborative study, the candidate method was compared to the United States Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 10 Listeria reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). Eighteen participants from 10 laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Three levels of contamination were evaluated for each matrix. Statistical analysis was conducted according to the probability of detection (POD) statistical model. In addition, to extend the scope, six matrix studies were performed comparing the candidate method to the FDA/BAM reference method. One of these matrixes was also compared to the ISO 11290-1:2017 Microbiology of the Food Chain-Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.-Part 1: Detection Method Reference Method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated, and the method demonstrated acceptable inter-laboratory reproducibility as determined in the collaborative evaluation. The two PCR instruments used in the study performed equivalently. All presumptive positives were confirmed via the alternative confirmation procedure. In the pre-collaborative studies, the results showed comparable performances between the candidate method and the reference method for all matrixes tested. CONCLUSIONS: Based on the data generated, the method demonstrated acceptable inter-laboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 25 g full-fat cottage cheese is known to be a challenging matrix to test. No unusual cross-contamination or false positive/negative data were reported, highlighting the ease of use, reproducibility, and robustness of the method.


Assuntos
COVID-19 , Listeria monocytogenes , Listeria , Microbiologia de Alimentos , Humanos , Listeria/genética , Listeria monocytogenes/genética , Pandemias , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Estados Unidos
3.
J AOAC Int ; 105(1): 167-190, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34586389

RESUMO

BACKGROUND: The Thermo Scientific™ SureTect™ Salmonella species PCR Assay utilizes Solaris™ reagents for performing PCR for the rapid and specific detection of Salmonella species in a broad range of foods and select environmental surfaces. OBJECTIVE: The aims were to demonstrate the reproducibility of the Thermo Scientific SureTect Salmonella species PCR Assay in a collaborative study using a challenging matrix, cocoa powder, and to extend the scope of the method. METHOD: In the collaborative study, the candidate method was compared to the US Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 5 Salmonella reference method. The candidate method used two PCR thermocyclers, the Applied Biosystems™ QuantStudio™ 5 Real-Time PCR instrument (QS5) and the Applied Biosystems 7500 Fast Real-Time PCR instrument (7500 Fast). Fourteen participants from nine laboratories located within the United States and Europe were solicited for the collaborative study, with 12 participants submitting valid data. Three levels of contamination were evaluated for each matrix. Statistical analysis was conducted according to the probability of detection statistical model. In addition, 11 matrix studies were performed comparing the candidate method to the FDA/BAM Chapter 5 or US Department of Agriculture, Food Safety and Inspection Service, Microbiology Laboratory Guidebook 4.10 Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Siluriformes (Fish) Products and Carcass and Environmental Sponges reference method. Nine of these matrices were also compared to the EN ISO 6579-1:2017/Amd.1:2020(E) Microbiology of the food chain-Horizontal method for the detection, enumeration and serotyping of Salmonella-Part 1: Detection of Salmonella spp.-AMENDMENT 1: Broader range of incubation temperatures, amendment to the status of Annex D, and correction of the composition of MSRV and SC reference method. RESULTS: In the collaborative study, the difference in laboratory results indicates equivalence between the candidate method and reference method for the matrix evaluated, and the method demonstrated acceptable interlaboratory reproducibility as determined in the collaborative evaluation. False-positive and false-negative rates were determined for the matrix and produced values of <2%. The two PCR thermocyclers (QS5, 7500 Fast) performed equivalently. There were no result differences between candidate method confirmations and reference method confirmations. In the pre-collaborative matrix extension, the results from the matrix studies showed a comparable performance between the candidate method and the tested reference methods. CONCLUSIONS: Based on the data generated, the method demonstrated acceptable interlaboratory reproducibility data and statistical analysis. HIGHLIGHTS: Due to the COVID-19 pandemic, some participants had to be trained remotely. Additionally, 375 g cocoa powder is known to be a challenging matrix for PCR methods. No unusual cross-contamination or false-positive/negative was reported, highlighting the ease of use, reproducibility, and robustness of the method.


Assuntos
COVID-19 , Microbiologia de Alimentos , Animais , Humanos , Carne/análise , Pandemias , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , SARS-CoV-2 , Salmonella/genética , Estados Unidos
4.
J AOAC Int ; 105(2): 521-548, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34613392

RESUMO

BACKGROUND: The Thermo Scientific SureTect™ Escherichia coli O157:H7 and STEC Screening PCR Assay and SureTect Escherichia coli STEC Identification PCR Assay are real-time PCR kits for the rapid detection of E. coli O157:H7 and non-E. coli O157 Shiga toxin-producing E. coli (STEC) serotypes (O26, O45, O103, O111, O121, O145) from fresh raw spinach, fresh baby leaves, fresh cut tomatoes, frozen raw beef, raw beef trim, and beef carcass sponges. OBJECTIVE: Both assays were evaluated for AOAC®Performance Tested MethodsSM certification. METHODS: Detection and confirmation inclusivity/exclusivity, matrix, product consistency and stability, and robustness studies were conducted. In the matrix studies, the candidate method was validated against United States and international reference methods for STEC serotypes. RESULTS: Matrix studies showed no statistically significant differences between the candidate and reference method results when analyzed by probability of detection. For each inclusivity/exclusivity study, all inclusivity strains and no exclusivity strains were detected by either kit. Robustness testing demonstrated that the identification assay performed reliably despite method deviations; however, although not statistically significant, the screening assay performance was impacted. Product consistency and stability testing demonstrated no statistically significant differences between kit lots and storage time points. CONCLUSION: The data presented show that both assays constitute a rapid and reliable workflow for the detection and confirmation of E. coli O157:H7 and stipulated non-E. coli O157:H7 STEC serotypes from the tested matrixes. HIGHLIGHTS: Results are obtained in 80 min post-enrichment with both assays run simultaneously, allowing for the detection and confirmation of STEC within a single workflow.


Assuntos
Escherichia coli O157 , Escherichia coli Shiga Toxigênica , Solanum lycopersicum , Animais , Bovinos , Escherichia coli O157/genética , Microbiologia de Alimentos , Folhas de Planta , Reação em Cadeia da Polimerase em Tempo Real , Sorogrupo , Escherichia coli Shiga Toxigênica/genética , Spinacia oleracea , Estados Unidos
5.
J AOAC Int ; 104(4): 935-947, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33822958

RESUMO

BACKGROUND: The Thermo Scientific™ SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) Detection Workflow, packaged with Applied Biosystems™ TaqMan™ 2019-nCoV Assay Kit v1 targets three different SARS-CoV-2 genomic regions in a single RT-PCR reaction. OBJECTIVE: To validate the Thermo Scientific SARS-CoV-2 RT-PCR Workflow, for the detection of SARS-CoV-2 virus on stainless-steel surfaces as part of the AOAC Performance Tested MethodSM Emergency Response Validation program. METHOD: The Applied Biosystems TaqMan 2019-nCoV Assay Kit v1, as part of the Thermo Scientific SARS-CoV-2 RT-PCR Workflow, was evaluated for specificity using in silico analysis of 15 764 SARS-CoV-2 sequences and 65 exclusivity organisms. The Thermo Scientific SARS-CoV-2 RT-PCR Workflow was evaluated in an unpaired study for one environmental surface (stainless steel) and compared to the U.S. Centers for Disease Control and Prevention 2019-Novel Coronavirus RT-PCR Diagnostic Panel, Instructions for Use (Revision 4, Effective 6/12/2020). RESULTS: In silico analysis showed that, of the 15 756 target SARS-CoV-2 genomes analyzed, 99% of the strains/isolates are perfectly matched to at least two of the three assays, and more than 90% have 100% homology to all three assays (ORF1ab, N-gene, S-gene) in the SARS-CoV-2 Kit. None of the 65 non-target strain genomes analyzed showed matching sequences. In the matrix study, the Thermo Scientific SARS-CoV-2 workflow showed comparable detection to the centers of disease control and prevention (CDC) method. CONCLUSIONS: The Thermo Scientific SARS-CoV-2 RT-PCR Workflow is an effective procedure for detection of RNA from SARS-CoV-2 virus from stainless steel. HIGHLIGHTS: The workflow provides equivalent performance results with the two tested RNA extraction platforms and the two tested RT-PCR instruments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Aço Inoxidável , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...