Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(7): 3269-3292, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265441

RESUMO

Presently, the rapid depletion of resources and drastic climate change highlight the importance of sustainable development. In this case, nanochitin derived from chitin, the second most abundant renewable polymer in the world, possesses numerous advantages, including toughness, easy processability and biodegradability. Furthermore, it exhibits better dispersibility in various solvents and higher reactivity than chitin owing to its increased surface area to volume ratio. Additionally, it is the only natural polysaccharide that contains nitrogen. Therefore, it is valuable to further develop this innovative technology. This review summarizes the recent developments in nanochitin and specifically identifies sustainable strategies for its preparation. Additionally, the different biomass sources that can be exploited for the extraction of nanochitin are highlighted. More importantly, the life cycle assessment of nanochitin preparation is discussed, followed by its applications in advanced manufacturing and perspectives on the valorization of chitin waste.

2.
Waste Manag ; 157: 339-347, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603448

RESUMO

Spent coffee grounds (SCGs) are waste residues arising from the process of coffee brewing and are usually sent to landfills, causing environmental concerns. SCGs contain a considerable amount of fatty acids and is therefore a promising green alternative bio-based phase change material (PCMs) compared to conventional organic and inorganic PCMs. In this study, the extraction of coffee oil from SCGs was conducted using three different organic solvents-ethanol, acetone, and hexane. The chemical composition, chemical, and thermophysical properties of these coffee oil extracts were studied to evaluate their feasibility as a bio-based PCM. Gas chromatography-mass spectroscopy (GC-MS) analysis indicated that coffee oil contains about 60-80 % of fatty acids while the phase transition temperature of the coffee oil extracts is approximately 4.5 ± 0.72 °C, with latent heat values of 51.15 ± 1.46 J/g as determined by differential scanning calorimetry (DSC). Fourier Transform Infrared Spectroscopy (FTIR) and DSC results of coffee oil extracts after thermal cycling revealed good thermal and chemical stability. An application study to evaluate coffee oil extract as a potential cold therapy modality showed that it can maintain temperatures below normal body temperature for up to 46 min. In conclusion, this work exemplifies the potential of SCGs as a promising green and sustainable resource for bio-based PCMs for low-temperature thermal energy storage applications such as cold-chain transportation and cold therapy.


Assuntos
Café , Temperatura Alta , Café/química , Solventes , Ácidos Graxos , Extratos Vegetais
3.
Chem Asian J ; 17(21): e202200671, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36002402

RESUMO

There has been increasing exploration of the development and production of biodegradable polymers in response to issues with petrol-based polymers and their impact on the environment. Here we report a new approach to synthesize a natural nanogel from lignin and nanocellulose. First, lignin nanobeads were synthesized by a solvent-shifting method, which showed a spherical shape with a diameter of 159.7 nm. Then the lignin nanobeads were incorporated into a nanocellulose network to form the lignin/cellulose nanogels. The nanocellulose fibrils (CNF-C) nanogels reveal a higher storage modulus than the nanocellulose crystal (CNC-C) ones due to the denser network with self-entanglement of longer cellulose chains. The presence of lignin nanobeads in the nanogels helped to increase the viscoelasticity of the nanogels. This work highlights that the new kinds of green nanogels could be potentially utilized in a variety of biomedical applications such as drug delivery and wound dressing.


Assuntos
Celulose , Lignina , Lignina/química , Celulose/química , Nanogéis , Sistemas de Liberação de Medicamentos , Polímeros
4.
Bioact Mater ; 8: 71-94, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541388

RESUMO

Lignin is a versatile biomass that possesses many different desirable properties such as antioxidant, antibacterial, anti-UV, and good biocompatibility. Natural lignin can be processed through several chemical processes. The processed lignin can be modified into functionalized lignin through chemical modifications to develop and enhance biomaterials. Thus, lignin is one of the prime candidate for various biomaterial applications such as drug and gene delivery, biosensors, bioimaging, 3D printing, tissue engineering, and dietary supplement additive. This review presents the potential of developing and utilizing lignin in the outlook of new and sustainable biomaterials. Thereafter, we also discuss on the challenges and outlook of utilizing lignin as a biomaterial.

5.
RSC Adv ; 11(5): 2682-2692, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424216

RESUMO

Large amounts of spent coffee grounds (SCGs) are often discarded and there is a need to find alternative disposal methods due to environmental concerns. This project aims to develop sustainable materials by re-purposing spent coffee grounds (SCGs). Oil extraction was performed using different organic solvents and yielded approximately 10% coffee oil. Coffee oil contains potentially useful chemical compounds such as fatty acids and caffeine. They also exhibited antioxidant properties. Extracted SCGs (ESCGs) were blended with epoxy resin to form composites. ESCG composites displayed a general decrease in mechanical properties relative to epoxy. However, improvements were observed when comparing ESCG composites and SCG composites. The greatest improvement belongs to epoxy composite filled with acetone-ESCGs, where the tensile strength, flexural modulus and flexural strength increased to 23.4 MPa, 3.02 GPa and 42.9 MPa respectively. This study presents a way to exploit waste materials which contributes to the goal of sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...