Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(15): 10903-10911, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39034591

RESUMO

We report here on the development of a fluorescent cone homooxacalix[3]arene-based receptor with a pyrene unit on the wide rim of the macrocycle (Ox3F) for the selective detection of primary ammonium ions, including those of biological importance. Ox3F was synthesized efficiently via an innovative strategy that enables the regio- and iteroselective wide rim functionalization of the readily available p-tBu-substituted homooxacalix[3]arene precursor. Nuclear magnetic resonance studies and in silico methods highlighted the endo-complexation of primary ammonium ions, including the protonated form of biogenic dopamine, tryptamine, serotonin, mexamine, and 3-iodothyronamine. The binding mode is similar for all guests with the ion deeply inserted into the polyaromatic cavity, enabling the NH3+ head to establish three hydrogen bonds with the ethereal oxygens of the macrocycle. Fluorescence quenching of the pyrene unit was observed following the π-π interaction between the pyrene moiety and the aromatic groups of serotonin, mexamine, and 3-iodothyronamine. No quenching was observed upon complexation of the smaller aromatic neurotransmitter dopamine as well as aliphatic amines and polyamines. This study presents a novel approach for biologically relevant ammonium ion chemosensing with ongoing efforts focused on translating these systems for aqueous environment applications.

2.
J Org Chem ; 89(6): 4210-4214, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447076

RESUMO

Few synthetic methodologies that yield tris-functionalized C3v-symmetrical calix[6]arenes have been reported. In this work, three allyl protecting groups are selectively placed in 1,3,5 alternate positions of three pristine calix[6]arenes, each differing by their substituent on the large rim, resulting in three new C3v-symmetrical molecular platforms. Removal of the protecting allylic groups gives access to sophisticated calix[6]arenes that can be further modified. The potential of these new C3v-symmetrical molecular platforms is notably exemplified through the development of a new family of calix[6]arene-based N ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA