Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 15: 483-493, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649491

RESUMO

Recent neuroimaging findings have highlighted the impact of premature birth on subcortical development and morphological changes in the deep grey nuclei and ventricular system. To help characterize subcortical microstructural changes in preterm neonates, we recently implemented a multivariate tensor-based method (mTBM). This method allows to precisely measure local surface deformation of brain structures in infants. Here, we investigated ventricular abnormalities and their spatial relationships with surrounding subcortical structures in preterm neonates. We performed regional group comparisons on the surface morphometry and relative position of the lateral ventricles between 19 full-term and 17 preterm born neonates at term-equivalent age. Furthermore, a relative pose analysis was used to detect individual differences in translation, rotation, and scale of a given brain structure with respect to an average. Our mTBM results revealed broad areas of alterations on the frontal horn and body of the left ventricle, and narrower areas of differences on the temporal horn of the right ventricle. A significant shift in the rotation of the left ventricle was also found in preterm neonates. Furthermore, we located significant correlations between morphology and pose parameters of the lateral ventricles and that of the putamen and thalamus. These results show that regional abnormalities on the surface and pose of the ventricles are also associated with alterations on the putamen and thalamus. The complementarity of the information provided by the surface and pose analysis may help to identify abnormal white and grey matter growth, hinting toward a pattern of neural and cellular dysmaturation.


Assuntos
Recém-Nascido Prematuro , Ventrículos Laterais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Putamen/diagnóstico por imagem , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Ventrículos Laterais/crescimento & desenvolvimento , Masculino , Estudos Prospectivos , Putamen/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento
2.
Proc Int Conf Image Proc ; 2012: 1257-1260, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-29937696

RESUMO

MRI Diffusion Tensor Imaging (DTI) has been recently proposed as a highly discriminative measurement to detect structural damages in Disorders of Consciousness patients (Vegetative State/Unresponsive Wakefulness Syndrome-(VS/UWS) and Minimally Consciousness State-MCS). In the DTI analysis, certain tensor features are often used as simplified scalar indices to represent these alterations. Those characteristics are mathematically and statistically more tractable than the full tensors. Nevertheless, most of these quantities are based on a tensor diffusivity estimation, the arithmetic average among the different strengths of the tensor orthogonal directions, which is supported on a symmetric linear relationship among the three directions, an unrealistic assumption for severely damaged brains. In this paper, we propose a new family of scalar quantities based on Generalized Ordered Weighted Aggregations (GOWA) to characterize morphological damages. The main idea is to compute a tensor diffusitivity estimation that captures the deviations in the water diffusivity associated to damaged tissue. This estimation is performed by weighting and combining differently each tensor orthogonal strength. Using these new scalar quantities we construct an affine invariant DTI tensor feature using regional tissue histograms. An evaluation of these new scalar quantities on 48 patients (23 VS/UWS and 25 MCS) was conducted. Our experiments demonstrate that this new representation outperforms state-of-the-art tensor based scalar representations for characterization and classification problems.

3.
IEEE Trans Med Imaging ; 27(1): 129-41, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18270068

RESUMO

This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.


Assuntos
Algoritmos , Encéfalo/patologia , Encefalite Viral/patologia , Infecções por HIV/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Imageamento por Ressonância Magnética/métodos , Síndrome da Imunodeficiência Adquirida/patologia , Adulto , Simulação por Computador , Interpretação Estatística de Dados , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Modelos Neurológicos , Modelos Estatísticos , Análise Multivariada , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...