Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(41): 28901-28910, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27723855

RESUMO

An investigation comprising experimental techniques (absorption capacity of SO2 and vibrational spectroscopy) and molecular simulations (thermodynamics, structure, and dynamics) has been performed for the polymer poly(ethylene oxide) (PEO), the ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4111][Tf2N]) and their mixtures as sulfur dioxide (SO2) absorbing materials. The polymer PEO has higher capacity to absorb SO2 than the neat ionic liquid, whereas the mixtures presented intermediary absorption capacities. The band assigned to the symmetric stretching band of SO2 at ca. 1140 cm-1, which is considered a spectroscopic probe for the strength of SO2 interactions with its neighborhood, shifts to lower wavenumbers as more negative total interaction energy values of SO2 were evaluated from the simulations. The solvation free energy of SO2, ΔGsol, correlates linearly with the absorption capacity of SO2. The negative values of ΔGsol are due to negative and positive values of enthalpy and entropy, respectively. In the ionic liquid, SO2 weakens the cation-anion interactions, whereas in the mixture with a high content of PEO these interactions are slightly increased. Such effects were correlated with the relative population of cisoid and transoid conformers of Tf2N anions as revealed by Raman spectroscopy. Moreover, the presence of SO2 in the systems provokes the increase of diffusion coefficients of the absorbing species in comparison with the systems without the gas. Proper to the slow dynamics of the polymer, the diffusion coefficient of ions and SO2 diminishes with the increase of the PEO content.

2.
PLoS One ; 8(11): e80519, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282549

RESUMO

A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs.


Assuntos
Biomassa , Cobre/metabolismo , Hypocrea/metabolismo , Nanopartículas Metálicas , Mineração , Brasil , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA