Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(5)2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441322

RESUMO

The authors wish to correct the oligonucleotide sequence of primer E-LAP-F1 and LIS-R1 in Table 1in their paper published in Sensors [1], doi:10.3390/s150922672, http://www.mdpi.com/1424-8220/15/9/22672. The following table should be used.[...].

2.
Appl Environ Microbiol ; 82(11): 3256-3268, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994085

RESUMO

UNLABELLED: In this study, we investigated whether a laser scatterometer designated BARDOT (bacterial rapid detection using optical scattering technology) could be used to directly screen colonies of Listeria monocytogenes, a model pathogen, with mutations in several known virulence genes, including the genes encoding Listeria adhesion protein (LAP; lap mutant), internalin A (ΔinlA strain), and an accessory secretory protein (ΔsecA2 strain). Here we show that the scatter patterns of lap mutant, ΔinlA, and ΔsecA2 colonies were markedly different from that of the wild type (WT), with >95% positive predictive values (PPVs), whereas for the complemented mutant strains, scatter patterns were restored to that of the WT. The scatter image library successfully distinguished the lap mutant and ΔinlA mutant strains from the WT in mixed-culture experiments, including a coinfection study using the Caco-2 cell line. Among the biophysical parameters examined, the colony height and optical density did not reveal any discernible differences between the mutant and WT strains. We also found that differential LAP expression in L. monocytogenes serotype 4b strains also affected the scatter patterns of the colonies. The results from this study suggest that BARDOT can be used to screen and enumerate mutant strains separately from the WT based on differential colony scatter patterns. IMPORTANCE: In studies of microbial pathogenesis, virulence-encoding genes are routinely disrupted by deletion or insertion to create mutant strains. Screening of mutant strains is an arduous process involving plating on selective growth media, replica plating, colony hybridization, DNA isolation, and PCR or immunoassays. We applied a noninvasive laser scatterometer to differentiate mutant bacterial colonies from WT colonies based on forward optical scatter patterns. This study demonstrates that BARDOT can be used as a novel, label-free, real-time tool to aid researchers in screening virulence gene-associated mutant colonies during microbial pathogenesis, coinfection, and genetic manipulation studies.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Lasers , Listeria monocytogenes/classificação , Proteínas de Membrana/deficiência , Propriedades de Superfície , Fatores de Virulência/deficiência , Proteínas de Bactérias/análise , Fenômenos Biofísicos , Listeria monocytogenes/química , Proteínas de Membrana/análise , Fatores de Virulência/análise
3.
Sensors (Basel) ; 15(9): 22672-91, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26371000

RESUMO

The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 104 CFU/mL.


Assuntos
Técnicas Biossensoriais/métodos , Microbiologia de Alimentos/métodos , Listeria/genética , Listeria/isolamento & purificação , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética , Limite de Detecção , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...