Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109512

RESUMO

At the origin of life, extremely diverse mixtures of oligomers and polymers could be obtained from relatively simple molecular bricks. Here, we present an example of the polymerization of two amidonitriles derived from cysteine, Cys-Ala-CN and Cys-Met-CN. The thiol function in a molecule adds onto the nitrile group of another one, allowing efficient condensation reactions and making available an extensive range of polymers containing amide bonds and/or five-membered heterocycles, namely thiazolines. Macrocycles were also identified, the biggest one containing sixteen residues (cyclo(Cys-Met)8). MALDI-TOF mass spectrometry was used to identify all the present species. What these examples show is that complex mixtures are likely to have formed on the primitive Earth and that, ultimately, the selection that must have followed may have been an even more crucial step towards life than the synthesis of the pre-biological species themselves.

2.
Sci Rep ; 10(1): 14488, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879403

RESUMO

The centrality of pyruvate oxidative decarboxylation into acetyl-CoA in current biochemistry is a strong argument for proposing that a similar reaction have been necessary for the development of an effective protometabolism on the primitive Earth. However, such a decarboxylation requires the use of an oxidant and a catalyst, today enzymatic. Based on the mechanisms of the pyruvate dehydrogenase complex and pyruvate-ferredoxin oxidoreductase, we propose that the initial mechanism involved disulfides and occurred via radicals. A first disulfide is obtained by reacting glyoxylate with hydrogen sulfide. It is then possible to produce a wide variety of other disulfides by exchange reactions. When reacted with pyruvate under UV light they give thioesters. This process requires no oxidant and is therefore compatible with what is known of the redox conditions of the early Earth. Neither does it require any catalyst. It could be the first way to acetyl thioesters, a way that was later improved by the introduction of catalysts, first minerals, then enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...