Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(45): 13444-13451, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726919

RESUMO

The lifetimes of single bubbles or foams that are formed in mixtures of liquids can be several orders of magnitude larger than the ones formed in pure liquids. We recently demonstrated that this enhanced stability results from differences between bulk and interfacial concentrations in the mixture, which induce a thickness dependence of the surface tension in liquid films, and thus a stabilizing Marangoni effect. Concentration differences may be associated with nonlinear variations of surface tension with composition and we further investigate their link with foamability of binary mixtures. We show that, for asymmetric binary mixtures, that is, made of molecules of very different sizes, strong nonlinearities in surface tension can be measured, that are associated with large foam lifetimes. When the molecules that occupy the largest surface areas have the smallest surface tension, the surface tension of the mixture varies sublinearly with composition, reflecting an enrichment in this species at the interface with air, as classically reported in the literature. In contrast, when they exhibit the largest surface tension, superlinear variations of surface tension are observed, despite a similar enrichment. We discuss these variations in light of a simple thermodynamic model for ideal mixtures and we demonstrate why foam stability is enhanced for both sublinear and superlinear surface tension variations, thus, shedding new light on foamability without added surfactants.

2.
Phys Rev Lett ; 125(17): 178002, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156645

RESUMO

The formation of froth in mixtures of liquids is well documented, particularly in oil mixtures. However, in nonvolatile liquids and in the absence of surface-active molecules, the origin of increased liquid film lifetimes had not been identified. We suggest a stabilizing mechanism resulting from the nonlinear variations of the surface tension of a liquid mixture with its composition. We report on experimental lifetimes of froths in binary mixtures and show that their variations are well predicted by the suggested mechanism. We demonstrate that it prescribes the thickness reached by films before their slow drainage, a thickness which correlates well with froth lifetimes for both polar and nonpolar liquids.

3.
J Colloid Interface Sci ; 531: 693-704, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077129

RESUMO

HYPOTHESIS: Adsorption of high molar mass polymers impacts flow in porous media. In the industrially crucial case of acrylamide-based polymers in porous silicates, the very occurrence of adsorption is still debated. Thus, the present work aimed at establishing a clear correlation between adsorption of acrylamide-based polymers and injectivity loss in porous silica. EXPERIMENTS: A review of the literature revealed apparent discrepancies regarding the affinity of acrylamide-based polymers for siliceous materials having ostensibly the same chemical composition. Through a deeper analysis of the reported literature and new experimental measurements on well-defined polymers and surfaces, we investigated the relation between the silica surface properties and the acrylamide-based polymer adsorption. Our observations were confronted with water injection experiments in porous media of different surface compositions previously put in contact with polymers. FINDINGS: The polymer affinity towards the silica surface depended on the density of hydroxyl groups at the surface of the oxide, its thermal treatment, storage condition and purity. This demonstrated that the impact of adsorption on acrylamide-based polymer flow within porous silicates heavily depends on the silicate surface composition and must be carefully evaluated. In view of the continually expanding use of acrylamide-based polymers, notably in enhanced oil recovery, such considerations provide interesting insights into the effect of adsorption on their flow into porous materials.

4.
Soft Matter ; 14(17): 3378-3386, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29666862

RESUMO

We report controlled and tunable Marangoni flows resulting from concentration gradients that are induced by placing a droplet of volatile solute above the surface of a liquid. Condensation of the solute at the liquid surface results in a surface tension gradient that drives a permanent flow of surface velocity up to a few centimeters per second. Depending on the sign of the variation of surface tension with solute concentration, inward or outward surface flows can be obtained. We show that, in the region close to the vertical axis of the droplet, the flow rate varies with the droplet height following a power law, whose exponent depends on the nature of the transfer of the solute in air. In the case of a purely diffusive transfer we establish an analytical law for the velocity rate, which is in very good agreement with the experimental data. In addition, we discuss the effect of convection on the found scaling laws. Finally, we demonstrate that the Marangoni flow is modified by the addition of a very small quantity of surfactants, which themselves induce a Marangoni flow opposing the primary one. We suggest it could provide a simple method to detect traces of surfactants, of increasing sensitivity with decreasing surfactant solubility.

5.
Eur Phys J E Soft Matter ; 40(12): 116, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29274066

RESUMO

In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

6.
Phys Rev Lett ; 118(4): 047801, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28186782

RESUMO

Confinement induces various modifications in the dynamics of polymers as compared to bulk. We focus here on the role of dynamical heterogeneities on the mechanics of confined polymers. Using a simple model that allows computation of the mechanical response over 10 decades in frequency, we show that the local mechanical coupling controlling the macroscopic response in the bulk disappears in a confined geometry. The slowest domains significantly contribute to the mechanical response for increasing confinement. As a consequence, the apparent glass transition is broadened and shifted towards lower frequencies as confinement increases. We compare our numerical predictions with experiments performed on poly(ethylacrylate) chains in model filled elastomers. We suggest that the change of elastic coupling between domains induced by confinement should contribute significantly to the polymer mobility shift observed on filled systems.

7.
Soft Matter ; 12(36): 7435-44, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27532509

RESUMO

Powders of nanoparticles are volatile, i.e. easily disperse in air, which makes their handling difficult. Granulation of nanoparticle powders provides a solution to that issue, and it is generally performed by spray drying the nanoparticles that have been suspended in a liquid. Spray drying of a colloidal suspension consists of atomising the suspension into droplets by a fast flowing and hot gas. Once the droplets dried, the resulting dry grains/microparticles can be used in a wide range of applications - food, pharmaceutics, fillers, ceramics, etc. It is well known that the grains resulting from spray-drying may be spherical but may also exhibit other diverse morphologies. Although different influencing parameters have been identified, no clear overview can be found in the literature for the driving mechanisms of grain shaping. In the present work, we review the assumptions made in the literature to explain the different morphologies. We analyse the orders of magnitude of the different effects at stake and show that the grain shape does not result from a hydrodynamic instability but is determined by the drying stage. However, we emphasize that neither the drying time nor the associated Péclet number are critical parameters for the determination of shape morphology. In light of those results, we also review and discuss the single droplet experiments developed to mimic spray drying. Generalising our previous works, we further analyse how the control of morphology can be achieved by tuning the colloidal interactions in the suspension. We detail the model we have developed that relates the colloidal interaction potential to a critical pressure exerted by the solvent as it flows, and we provide a quantitative prediction of the grain shape. Finally, we offer perspectives with regard to spray drying of systems such as molecular solutions, widely performed in e.g. the pharmaceutical industry.

8.
Soft Matter ; 11(18): 3660-5, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25811664

RESUMO

The present study focuses on the drying of droplets of colloidal suspensions using the Leidenfrost effect. At the end of drying, grains show different morphologies: cups or spheres depending on the ionic strength or zeta potential of the initial suspension. High ionic strengths and low absolute zeta potential values lead to spherical morphologies. A model based on the calculations of DLVO potentials has been implemented to extract a critical pressure, which provides a quantitative criterion for buckling whatever the initial formulation is. Particularly, the buckling time is quantitatively predicted from the interparticle interactions and shows an excellent agreement with experimental values.

9.
Langmuir ; 28(5): 2308-12, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22280317

RESUMO

We report evidence for photocontrolled stability and breakage of aqueous foams made from solutions of a cationic azobenzene-containing surfactant over a wide range of concentrations. Exposure to UV or visible lights results in shape and polarity switches in the surfactant molecule, which in turn affects several properties including critical micelle concentration, equilibrium surface tension, and the air-water interfacial composition (cis isomers are displaced by trans ones). We demonstrate that the trans isomer stabilizes foams, whereas the cis isomer forms unstable foams, a property that does not correlate with effects of light on surface tension, nor with total surfactant concentration. Achieving in situ breakage of foam is accordingly ascribed to the remote control of the dynamics of adsorption/desorption of the surfactant, accompanied by gradients of concentrations out of equilibrium. Photomodulation of adsorption kinetics and/or diffusion dynamics on interfaces is reached here by a noninvasive clean trigger, bringing a new tool for the study of foams.


Assuntos
Compostos Azo/química , Luz , Tensoativos/química , Estrutura Molecular , Processos Fotoquímicos , Tensão Superficial , Raios Ultravioleta
10.
Eur Phys J E Soft Matter ; 33(3): 203-10, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20972811

RESUMO

The wettability of coatings is very sensitive to the amount of solvent they may contain. When a droplet of volatile solvent, such as water, is deposited on a substrate, its vapor may quickly condensate just ahead of the contact line. We give an estimation of the extent of solvent uptake by a coating of variable thickness e , in front of an advancing contact line of given velocity U . Depending on the values of e and U , we observe three regimes: at low velocity and for a thin coating, the coating adsorbs a fraction of solvent that can quickly equilibrate across its entire thickness, so that it mainly appears solvophilic, while this is not the case for a thick coating. For high velocities, regardless the coating thickness, the coating ahead of the contact line does not have enough time to adsorb a significant amount of solvent, so that it mainly appears solvophobic. All these phenomena appear to be controlled by a molecular cut-off length.


Assuntos
Acrilamidas/química , Materiais Revestidos Biocompatíveis/química , Solventes/química , Água/química , Adsorção , Algoritmos , Modelos Químicos , Volatilização , Molhabilidade
11.
Eur Phys J E Soft Matter ; 31(3): 263-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20221664

RESUMO

We have been able to design model filled rubbers with exactly the same chemical structure but different filler arrangements. From these model systems, we show that the particle arrangement in the elastomeric matrix controls the strain softening at small strain amplitude known as the Payne effect, as well as the elastic modulus dependence on the temperature. More precisely, we observed that the Payne effect disappears and the elastic modulus only weakly depends on the temperature when the particles are well separated. On the contrary, samples with the same interfacial physical chemistry but with aggregated particles show large amplitudes of the Payne effect and their elastic modulus decreases significantly with the temperature. We discuss these effects in terms of glassy bridge formation between filler particles. The observed effects provide evidence that glassy bridges play a key role on the mechanical properties of filled rubbers.

12.
Eur Phys J E Soft Matter ; 28(4): 463-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19326155

RESUMO

The present work deals with emulsions of volatile alkanes in an aqueous clay suspension, Laponite, which forms a yield stress fluid. For a large enough yield stress (i.e. Laponite concentration), the oil droplets are prevented from creaming and the emulsions are thus mechanically stabilized. We have studied the evaporation kinetics of the oil phase of those emulsions in contact with the atmosphere. We show that the evaporation process is characterized by the formation of a sharp front separating the emulsion from a droplet-free Laponite phase, and that the displacement of the front vs. time follows a diffusion law. Experimental data are confronted to a diffusion-controlled model, in the case where the limiting step is the diffusion of the dissolved oil through the aqueous phase. The nature of the alkane, as well as its volume fraction in the emulsion, has been varied. Quantitative agreement with the model is achieved without any adjustable parameter and we describe the mechanism leading to the formation of a front.

13.
Rev Sci Instrum ; 79(10): 103107, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044702

RESUMO

Thermal motion gives rise to fluctuations in free surfaces; measurement of the thermally excited waves on such surfaces provides information on the mechanical properties of the medium. We have developed an optical tool to probe the thermally excited waves on free surfaces: surface fluctuation specular reflection (SFSR) spectroscopy. It consists in measuring the fluctuations in the position of a laser beam that is specularly reflected onto the free surface of a medium. The position of the reflected beam is sensitive to the roughness of the probed surface; the thermal waves are detected by subtracting the light intensities collected on the two quadrants of a photodiode, on which the beam is centered. We show how the measured signal is related to the medium properties. We also present measurements performed on Newtonian liquids as well as on a viscoelastic solid; we show that in all cases, there is a very good agreement between experimental and computed spectra. SFSR thus applies to a broad range of materials. It moreover offers a very good temporal resolution and should provide a useful tool for dynamical measurements on complex fluids.

14.
Langmuir ; 22(7): 3186-91, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16548576

RESUMO

This article presents the first experimental study of an advancing contact line for a colloidal suspension. A competition between the hydrodynamic flow due to the drop velocity and the drying is exhibited: drying accounts for particle agglomeration that pins the contact line whereas the liquid flow dilutes the agglomerated particles and allows the contact line to advance continuously. The dilution dominates at low concentration and high velocity, but at high concentration and low velocity, the contact line can be pinned by the particle agglomeration, which leads to a stick-slip motion of the contact line. The calculation of the critical speed splitting both regimes gives an order of magnitude comparable to that of experiments. Moreover, a model of agglomeration gives an estimation of both the size of the wrinkles formed during stick-slip and the force exerted by the wrinkle on the contact line.

15.
J Colloid Interface Sci ; 286(2): 564-72, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897072

RESUMO

We have studied the dynamics of the flocculation of poly(styrene-butadiene-acrylic acid) latex suspensions. These suspensions were flocculated by the addition of Ca2+ ions at high concentrations of latex particles. Using diffusing wave spectroscopy and dynamic single light scattering after dilution, we have observed--depending on the pH and on the Ca2+ concentration--several scenarios for flocculation including successive flocculation and deflocculation. This complex behavior reveals that the Ca2+ migration within the shell of the latex is slow in acidic solvent but fast in basic solvent.

16.
Eur Phys J E Soft Matter ; 17(1): 69-76, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15864729

RESUMO

In this paper, we report on nonuniform distribution of film-forming waterborne colloidal suspensions above the critical concentration phi(c) of the colloidal glass transition during drying. We found that colloidal suspension films dry nonuniformly when the initial rate of evaporation E and/or the initial thickness l(0) are high. We found that a Peclet number Pe, defined as Pe = El(0)/D, where D is the diffusion coefficient of the colloids in the diluted suspensions, does not predict uniformity of drying of the concentrated suspensions, contrary to the reported work on drying of diluted suspensions. Since the colloidal particles are crowded and their diffusive motion is restricted in concentrated suspensions, we assumed that above phi(c) water is transported to the drying surface by hydrodynamic flow along the osmotic pressure gradient. The permeability of water through channels between deforming particles is estimated by adapting the theory of foam drainage. We defined a new Peclet number Pe' by substituting the transport coefficient of flow (defined as the permeability divided by the viscosity, multiplied by the osmotic pressure gradient) for the diffusion coefficient. This extended Peclet number predicted the nonuniform drying with a criterion of Pe' > 1. These results indicate that the mechanism of water transport to the drying surface in concentrated suspensions is water permeation by osmotic pressure, which is faster than mutual diffusion between water and particles --that has been observed in diluted suspensions and discussed by Routh and Russel. The theory fits well the experimental drying curves for various thicknesses and rates of evaporation. The particle distribution in the drying films is also estimated and it is indicated that the latex distribution is nonuniform when Pe' > 1.

17.
Eur Phys J E Soft Matter ; 15(4): 371-81, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15565502

RESUMO

With the eventual aim of describing flowing elasto-plastic materials, we focus here on the elementary process of such a flow, a plastic event, and compute the long-range perturbation it elastically induces in a medium submitted to a global shear strain. We characterize the effect of a nearby wall on this perturbation, and quantify the importance of finite-size effects. Although most of our explicit formulae refer to 2D situations, our statements hold for 3D situations as well.

18.
Eur Phys J E Soft Matter ; 14(3): 287-92, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15338440

RESUMO

We report on the slow dynamics of concentrated colloidal suspensions during drying and rewetting under conditions of reversible concentration changes without coalescence or aggregation. We used multispeckle diffusing-wave spectroscopy to monitor the slow dynamics of particles. We found that the alpha relaxation of the suspensions exhibits successively slowing-down, acceleration and a stationary regime during drying at constant rates. Under rewetting conditions, we observed slowing-down and a stationary regime. The characteristic time of the stationary regime is inversely proportional to the rate of concentration change and identical for both drying and rewetting. We explain these regimes as aging (overaging), rejuvenation and plastic flow of the suspensions induced by a deviatoric stress (a combination of compressive and elongational stresses) which is induced by the uniaxial compressive strain generated by evaporation.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 1): 031405, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12689065

RESUMO

The aging behavior of colloidal suspensions of laponite, a model synthetic clay, is investigated using light scattering techniques. In order to measure the complete dynamic structure factor as a function of time and of wave vector, we have developed an original optical setup using a multispeckle technique for simple light scattering. We have thus measured the correlation of the scattered light intensity as a function of the age of the sample t(w) for various concentrations. For sufficiently concentrated samples, we observe a two-stage relaxation process. The fast relaxation is diffusive, stationary, and reminiscent of the liquidlike behavior observed in less concentrated samples. The slow relaxation behavior, however, is more complex. It exhibits two successive regimes as the sample ages. In the first regime, the decay time tau(a) increases exponentially with t(w) as long as tau(a)

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(3 Pt 1): 030502, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11308621

RESUMO

Many mean-field models have been introduced to describe the mechanical behavior of glassy materials. They often rely on averages performed over distributions of elements or states. We here underline that averaging is a more intricate procedure in mechanics than in more classical situations such as phase transitions in magnetic systems. This leads us to modify the predictions of the recently proposed soft glassy rheology model for soft glassy materials, for which we suggest that the viscosity should diverge at the glass transition temperature T(g) with an exponential form eta - exp[A/(T-T(g))].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...