Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(5-1): 054904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907389

RESUMO

Many fibrous materials are modeled as elastic networks featuring a substantial separation between the stiffness scales that characterize different microscopic deformation modes of the network's constituents. This scale separation has been shown to give rise to emergent complexity in these systems' linear and nonlinear mechanical response. Here we study numerically a simple model featuring said stiffness scale separation in two-dimensions and show that its mechanical response is governed by the competition between the characteristic stiffness of collective nonphononic soft modes of the stiff subsystem, and the characteristic stiffness of the soft interactions. We present and rationalize the behavior of the shear modulus of our complex networks across the unjamming transition at which the stiff subsystem alone loses its macroscopic mechanical rigidity. We further establish a relation in the soft-interaction-dominated regime between the shear modulus, the characteristic frequency of nonphononic vibrational modes, and the mesoscopic correlation length that marks the crossover from a disorder-dominated response to local mechanical perturbations in the near field, to a linear, continuumlike response in the far field. The effects of spatial dimension on the observed scaling behavior are discussed, in addition to the interplay between stiffness scales in strain-stiffened networks, which is relevant to understanding the nonlinear mechanics of non-Brownian fibrous biomatter.

2.
Phys Rev E ; 109(5-1): 054906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907496

RESUMO

There have been some interesting recent advances in understanding the notion of mechanical disorder in structural glasses and the statistical mechanics of these systems' low-energy excitations. Here we contribute to these advances by studying a minimal model for structural glasses' elasticity in which the degree of mechanical disorder-as characterized by recently introduced dimensionless quantifiers-is readily tunable over a very large range. We comprehensively investigate a number of scaling laws observed for various macro, meso and microscopic elastic properties, and rationalize them using scaling arguments. Interestingly, we demonstrate that the model features the universal quartic glassy vibrational density of states as seen in many atomistic and molecular models of structural glasses formed by cooling a melt. The emergence of this universal glassy spectrum highlights the role of self-organization (toward mechanical equilibrium) in its formation, and elucidates why models featuring structural frustration alone do not feature the same universal glassy spectrum. Finally, we discuss relations to existing work in the context of strain stiffening of elastic networks and of low-energy excitations in structural glasses, in addition to future research directions.

3.
Proc Natl Acad Sci U S A ; 121(14): e2317915121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536751

RESUMO

The flowing, jamming, and avalanche behavior of granular materials is satisfyingly universal and vexingly hard to tune: A granular flow is typically intermittent and will irremediably jam if too confined. Here, we show that granular metamaterials made from particles with a negative Poisson's ratio yield more easily and flow more smoothly than ordinary granular materials. We first create a collection of auxetic grains based on a re-entrant mechanism and show that each grain exhibits a negative Poisson's ratio regardless of the direction of compression. Interestingly, we find that the elastic and yielding properties are governed by the high compressibility of granular metamaterials: At a given confinement, they exhibit lower shear modulus, lower yield stress, and more frequent, smaller avalanches than materials made from ordinary grains. We further demonstrate that granular metamaterials promote flow in more complex confined geometries, such as intruder and hopper geometries, even when the packing contains only a fraction of auxetic grains. Moreover, auxetic granular metamaterials exhibit enhanced impact absorption. Our findings blur the boundary between complex fluids and metamaterials and could help in scenarios that involve process, transport, and reconfiguration of granular materials.

4.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226824

RESUMO

Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding the behavior and physical interpretation of observables that diverge near the transition is of particular importance. Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations, the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally, the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli diverge approaching unjamming. Here, we discuss important connections between all of these quantities and present numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct scaling regimes and two crossovers in the disorder quantifiers χz and χµ as functions of system size N and proximity to unjamming δz. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the quantity X (e.g., excess coordination δz or shear modulus µ) for an ensemble of systems. Importantly, χµ has been linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in glasses. We investigate similarities and differences in the behaviors of χz and χµ near the transition and discuss the implications of our findings on current literature, unifying findings in previous studies.

5.
Phys Rev E ; 108(4-1): 044124, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978582

RESUMO

Soft, quasilocalized excitations (QLEs) are known to generically emerge in a broad class of disordered solids and to govern many facets of the physics of glasses, from wave attenuation to plastic instabilities. In view of this key role of QLEs, shedding light upon several open questions in glass physics depends on the availability of computational tools that allow one to study QLEs' statistical mechanics. The latter is a formidable task since harmonic analyses are typically contaminated by hybridizations of QLEs with phononic excitations at low frequencies, obscuring a clear picture of QLEs' abundance, typical frequencies, and other important micromechanical properties. Here we present an efficient algorithm to detect the field of quasilocalized excitations in structural computer glasses. The algorithm introduced takes a computer-glass sample as input and outputs a library of QLEs embedded in that sample. We demonstrate the power of the algorithm by reporting the spectrum of glassy excitations in two-dimensional computer glasses featuring a huge range of mechanical stability, which is inaccessible using conventional harmonic analyses due to phonon hybridizations. Future applications are discussed.

6.
Phys Rev Lett ; 130(17): 178202, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172256

RESUMO

The interplay between activity and elasticity often found in active and living systems triggers a plethora of autonomous behaviors ranging from self-assembly and collective motion to actuation. Among these, spontaneous self-oscillations of mechanical structures is perhaps the simplest and most widespread type of nonequilibrium phenomenon. Yet, we lack experimental model systems to investigate the various dynamical phenomena that may appear. Here, we introduce a centimeter-sized model system for one-dimensional elastoactive structures. We show that such structures exhibit flagellar motion when pinned at one end, self-snapping when pinned at two ends, and synchronization when coupled together with a sufficiently stiff link. We further demonstrate that these transitions can be described quantitatively by simple models of coupled pendula with follower forces. Beyond the canonical case considered here, we anticipate our work to open avenues for the understanding and design of the self-organization and response of active biological and synthetic solids, e.g., in higher dimensions and for more intricate geometries.

7.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37191216

RESUMO

A hallmark of structural glasses and other disordered solids is the emergence of excess low-frequency vibrations on top of the Debye spectrum DDebye(ω) of phonons (ω denotes the vibrational frequency), which exist in any solid whose Hamiltonian is translationally invariant. These excess vibrations-a signature of which is a THz peak in the reduced density of states D(ω)/DDebye(ω), known as the boson peak-have resisted a complete theoretical understanding for decades. Here, we provide direct numerical evidence that vibrations near the boson peak consist of hybridizations of phonons with many quasilocalized excitations; the latter have recently been shown to generically populate the low-frequency tail of the vibrational spectra of structural glasses quenched from a melt and of disordered crystals. Our results suggest that quasilocalized excitations exist up to and in the vicinity of the boson-peak frequency and, hence, constitute the fundamental building blocks of the excess vibrational modes in glasses.

8.
Soft Matter ; 19(6): 1076-1080, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36661121

RESUMO

Continuum elasticity is a powerful tool applicable in a broad range of physical systems and phenomena. Yet, understanding how and on what scales material disorder may lead to the breakdown of continuum elasticity is not fully understood. We show, based on recent theoretical developments and extensive numerical computations, that disordered elastic networks near a critical rigidity transition, such as strain-stiffened fibrous biopolymer networks that are abundant in living systems, reveal an anomalous long-range linear elastic response below a correlation length. This emergent anomalous elasticity, which is non-affine in nature, is shown to feature a qualitatively different multipole expansion structure compared to ordinary continuum elasticity, and a slower spatial decay of perturbations. The potential degree of universality of these results, their implications (e.g. for cell-cell communication through biological extracellular matrices) and open questions are briefly discussed.

10.
J Chem Phys ; 155(20): 200901, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852497

RESUMO

Glassy solids exhibit a wide variety of generic thermomechanical properties, ranging from universal anomalous specific heat at cryogenic temperatures to nonlinear plastic yielding and failure under external driving forces, which qualitatively differ from their crystalline counterparts. For a long time, it has been believed that many of these properties are intimately related to nonphononic, low-energy quasilocalized excitations (QLEs) in glasses. Indeed, recent computer simulations have conclusively revealed that the self-organization of glasses during vitrification upon cooling from a melt leads to the emergence of such QLEs. In this Perspective, we review developments over the past three decades toward understanding the emergence of QLEs in structural glasses and the degree of universality in their statistical and structural properties. We discuss the challenges and difficulties that hindered progress in achieving these goals and review the frameworks put forward to overcome them. We conclude with an outlook on future research directions and open questions.

11.
Phys Rev E ; 104(4-1): 044905, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781437

RESUMO

The origin of several emergent mechanical and dynamical properties of structural glasses is often attributed to populations of localized structural instabilities, coined quasilocalized modes (QLMs). Under a restricted set of circumstances, glassy QLMs can be revealed by analyzing computer glasses' vibrational spectra in the harmonic approximation. However, this analysis has limitations due to system-size effects and hybridization processes with low-energy phononic excitations (plane waves) that are omnipresent in elastic solids. Here we overcome these limitations by exploring the spectrum of a linear operator defined on the space of particle interactions (bonds) in a disordered material. We find that this bond-force-response operator offers a different interpretation of QLMs in glasses and cleanly recovers some of their important statistical and structural features. The analysis presented here reveals the dependence of the number density (per frequency) and spatial extent of QLMs on material preparation protocol (annealing). Finally, we discuss future research directions and possible extensions of this work.

12.
Phys Rev E ; 104(3-2): 035001, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654186

RESUMO

Mechanical disorder in solids, which is generated by a broad range of physical processes and controls various material properties, appears in a wide variety of forms. Defining unified and measurable dimensionless quantifiers, allowing quantitative comparison of mechanical disorder across widely different physical systems, is therefore an important goal. Two such coarse-grained dimensionless quantifiers (among others) appear in the literature: one is related to the spectral broadening of discrete phononic bands in finite-size systems (accessible through computer simulations) and the other is related to the spatial fluctuations of the shear modulus in macroscopically large systems. The latter has been recently shown to determine the amplitude of wave attenuation rates in the low-frequency limit (accessible through laboratory experiments). Here, using two alternative and complementary theoretical approaches linked to the vibrational spectra of solids, we derive a basic scaling relation between the two dimensionless quantifiers. This scaling relation, which is supported by simulational data, shows that the two apparently distinct quantifiers are in fact intrinsically related, giving rise to a unified quantifier of mechanical disorder in solids. We further discuss the obtained results in the context of the unjamming transition taking place in soft sphere packings at low confining pressures, in addition to their implications for our understanding of the low-frequency vibrational spectra of disordered solids in general, and in particular those of glassy systems.

13.
J Chem Phys ; 155(7): 074502, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418936

RESUMO

The dramatic slowing down of relaxation dynamics of liquids approaching the glass transition remains a highly debated problem, where the crux of the puzzle resides in the elusive increase in the activation barrier ΔE(T) with decreasing temperature T. A class of theoretical frameworks-known as elastic models-attribute this temperature dependence to the variations of the liquid's macroscopic elasticity, quantified by the high-frequency shear modulus G∞(T). While elastic models find some support in a number of experimental studies, these models do not take into account the spatial structures, length scales, and heterogeneity associated with structural relaxation in supercooled liquids. Here, we propose and test the possibility that viscous slowing down is controlled by a mesoscopic elastic stiffness κ(T), defined as the characteristic stiffness of response fields to local dipole forces in the liquid's underlying inherent structures. First, we show that κ(T)-which is intimately related to the energy and length scales characterizing quasilocalized, nonphononic excitations in glasses-increases more strongly with decreasing T than the macroscopic inherent structure shear modulus G(T) [the glass counterpart of liquids' G∞(T)] in several computer liquids. Second, we show that the simple relation ΔE(T) ∝ κ(T) holds remarkably well for some computer liquids, suggesting a direct connection between the liquid's underlying mesoscopic elasticity and enthalpic energy barriers. On the other hand, we show that for other computer liquids, the above relation fails. Finally, we provide strong evidence that what distinguishes computer liquids in which the ΔE(T) ∝ κ(T) relation holds from those in which it does not is that the latter feature highly fragmented/granular potential energy landscapes, where many sub-basins separated by low activation barriers exist. Under such conditions, it appears that the sub-basins do not properly represent the landscape properties relevant for structural relaxation.

15.
Phys Rev E ; 103(2-1): 022606, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735957

RESUMO

Many structural glasses feature static and dynamic mechanical properties that can depend strongly on glass formation history. The degree of universality of this history dependence and what it is possibly affected by are largely unexplored. Here we show that the variability of elastic properties of simple computer glasses under thermal annealing depends strongly on the strength of attractive interactions between the glasses' constituent particles-referred to here as glass "stickiness." We find that in stickier glasses the stiffening of the shear modulus with thermal annealing is strongly suppressed, while the thermal-annealing-induced softening of the bulk modulus is enhanced. Our key finding is that the characteristic frequency and density per frequency of soft quasilocalized modes becomes effectively invariant to annealing in very sticky glasses; the latter are therefore deemed "thermomechanically inannealable." The implications of our findings and future research directions are discussed.

16.
Phys Rev E ; 103(2-1): 022605, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736046

RESUMO

Recent literature indicates that attractive interactions between particles of a dense liquid play a secondary role in determining its bulk mechanical properties. Here we show that, in contrast with their apparent unimportance to the bulk mechanics of dense liquids, attractive interactions can have a major effect on macro- and microscopic elastic properties of glassy solids. We study several broadly applicable dimensionless measures of stability and mechanical disorder in simple computer glasses, in which the relative strength of attractive interactions-referred to as "glass stickiness"-can be readily tuned. We show that increasing glass stickiness can result in the decrease of various quantifiers of mechanical disorder, on both macro- and microscopic scales, with a pair of intriguing exceptions to this rule. Interestingly, in some cases strong attractions can lead to a reduction of the number density of soft, quasilocalized modes, by up to an order of magnitude, and to a substantial decrease in their core size, similar to the effects of thermal annealing on elasticity observed in recent works. Contrary to the behavior of canonical glass models, we provide compelling evidence indicating that the stabilization mechanism in our sticky-sphere glasses stems predominantly from the self-organized depletion of interactions featuring large, negative stiffnesses. Finally, we establish a fundamental link between macroscopic and microscopic quantifiers of mechanical disorder, which we motivate via scaling arguments. Future research directions are discussed.

17.
J Chem Phys ; 154(8): 081101, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639772

RESUMO

The disorder-induced attenuation of elastic waves is central to the universal low-temperature properties of glasses. Recent literature offers conflicting views on both the scaling of the wave attenuation rate Γ(ω) in the low-frequency limit (ω → 0) and its dependence on glass history and properties. A theoretical framework-termed Fluctuating Elasticity Theory (FET)-predicts low-frequency Rayleigh scattering scaling in -d spatial dimensions, Γ(ω) ∼ γ ω -d+1, where γ = γ(Vc) quantifies the coarse-grained spatial fluctuations of elastic moduli, involving a correlation volume Vc that remains debated. Here, using extensive computer simulations, we show that Γ(ω) ∼ γω3 is asymptotically satisfied in two dimensions ( -d = 2) once γ is interpreted in terms of ensemble-rather than spatial-averages, where Vc is replaced by the system size. In doing so, we also establish that the finite-size ensemble-statistics of elastic moduli is anomalous and related to the universal ω4 density of states of soft quasilocalized modes. These results not only strongly support FET but also constitute a strict benchmark for the statistics produced by coarse-graining approaches to the spatial distribution of elastic moduli.

18.
Phys Rev Lett ; 126(1): 015501, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480780

RESUMO

Plastic deformation in amorphous solids is known to be carried by stress-induced localized rearrangements of a few tens of particles, accompanied by the conversion of elastic energy to heat. Despite their central role in determining how glasses yield and break, the search for a simple and generally applicable definition of the precursors of those plastic rearrangements-the so-called shear transformation zones (STZs)-is still ongoing. Here we present a simple definition of STZs-based solely on the harmonic approximation of a glass's energy. We explain why and demonstrate directly that our proposed definition of plasticity carriers in amorphous solids is more broadly applicable compared to anharmonic definitions put forward previously. Finally, we offer an open-source library that analyzes low-lying STZs in computer glasses and in laboratory materials such as dense colloidal suspensions for which the harmonic approximation is accessible. Our results constitute a physically motivated methodological advancement towards characterizing mechanical disorder in glasses, and understanding how they yield.

19.
J Chem Phys ; 153(21): 216101, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291904
20.
J Chem Phys ; 153(24): 241101, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380095

RESUMO

The systematic identification of temperature scales in supercooled liquids that are key to understanding those liquids' underlying glass properties, and their formation-history dependence, is a challenging task. Here, we study the statistics of particles' squared displacements δr2 between equilibrium liquid configurations at temperature T and their underlying inherent states, using computer simulations of 11 different computer glass formers. We show that the relative fluctuations of δr2 are nonmonotonic in T, exhibiting a maximum whose location defines the crossover temperature TX. Therefore, TX marks the point of maximal heterogeneity during the process of tumbling down the energy landscape, starting from an equilibrium liquid state at temperature T down to its underlying inherent state. We extract TX for the 11 employed computer glasses, ranging from tetrahedral glasses to packs of soft elastic spheres, and demonstrate its usefulness in putting the elastic properties of different glasses on the same footing. Interestingly, we further show that TX marks the crossover between two distinct regimes of the mean ⟨δr2⟩: a high temperature regime in which ⟨δr2⟩ scales approximately as T0.5 and a deeply supercooled regime in which ⟨δr2⟩ scales approximately as T1.3. Further research directions are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...