Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(14): 7644-54, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23800098

RESUMO

Circumpolar rivers, including the Mackenzie River in Canada, are sources of the contaminant mercury (Hg) to the Arctic Ocean, but few Hg export studies exist for these rivers. During the 2007-2010 freshet and open water seasons, we collected river water upstream and downstream of the Mackenzie River delta to quantify total mercury (THg) and methylmercury (MeHg) concentrations and export. Upstream of the delta, flow-weighted mean concentrations of bulk THg and MeHg were 14.6 ± 6.2 ng L(-1) and 0.081 ± 0.045 ng L(-1), respectively. Only 11-13% and 44-51% of bulk THg and MeHg export was in the dissolved form. Using concentration-discharge relationships, we calculated bulk THg and MeHg export into the delta of 2300-4200 kg yr(-1) and 15-23 kg yr(-1) over the course of the study. Discharge is not presently known in channels exiting the delta, so we assessed differences in river Hg concentrations upstream and downstream of the delta to estimate its influence on Hg export to the ocean. Bulk THg and MeHg concentrations decreased 19% and 11% through the delta, likely because of particle settling and other processes in the floodplain. These results suggest that northern deltas may be important accumulators of river Hg in their floodplains before export to the Arctic Ocean.


Assuntos
Mercúrio/química , Poluentes Químicos da Água/química , Alberta , Regiões Árticas , Rios
2.
Ecology ; 90(7): 1910-22, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19694139

RESUMO

Bacteria are critically important for carbon (C) cycling and energy flow in aquatic environments. However, studies to date have largely focused on the role of substrate quality in the regulation of this important process. As such, we know little about the role of other ecological drivers in shaping bacterially mediated C cycling. Here we examine the manner in which planktonic bacterial abundance (BA), productivity (BP), respiration (BR), and growth efficiency (BGE), and thus C cycling are affected by elevated pH, an ecological factor that occurs commonly in highly productive aquatic systems. We undertook our study in lakes of the Mackenzie Delta region of Canada. These lakes routinely experience high pH caused by rapid macrophyte photosynthesis. Two different experiment types were employed: first, a series of short-term experiments was used to assess the direct effects of elevated pH on bacteria experiencing differing pH levels in situ. Second, long-term mesocosms were used to explore the effect of elevated pH on bacteria over longer time scales and in the presence of other trophic levels. Bacterial productivity and BR slowed dramatically with elevated pH over the short term, potentially uncoupling bacterial processing of organic matter from its in-lake production and causing a switch away from biomass creation and toward C mineralization. With longer term exposure, bacterial communities adapted to the direct stress of elevated pH, but responses at higher trophic levels caused a cascade that mediated the effect of alkalization on bacteria, in a manner that could well vary among aquatic ecosystems. Our study establishes elevated pH as a key driver of bacterial C cycling and energy flow in aquatic systems with high autotrophic productivity.


Assuntos
Bactérias/metabolismo , Ecossistema , Água Doce/química , Água Doce/microbiologia , Fotossíntese/fisiologia , Animais , Concentração de Íons de Hidrogênio , Invertebrados/fisiologia , Fatores de Tempo , Microbiologia da Água
3.
Sci Total Environ ; 407(8): 2980-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19215970

RESUMO

Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17+/-5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213+/-0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Água/química , Canadá , Monitoramento Ambiental , Oceanos e Mares , Rios/química , Estações do Ano , Movimentos da Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-15328685

RESUMO

The concentrations and distribution of polycyclic aromatic hydrocarbons (PAHs) were assessed in sediment cores from among 14 lakes from three regions comprising a transect across the central Mackenzie Delta. PAHs were consistently found in the lake sediments, with parent concentrations in the 20-200 ng/g range. Concentrations were generally independent of depth in the sediment cores and this pattern was similar among the 3 regions of the delta. Concentrations increased in a westerly direction among the regions. For some lakes, the concentration of PAHs decreased with decreasing flooding frequency, and decreasing sedimentation rates. For the latter, maximum concentrations occurred at shallower depths within the sediment cores as flooding frequency among the lakes decreased. The distributions of C0-C4 alkylated 2- and 3- ring PAHs were consistent with a petrogenic origin, while the corresponding distribution of 4-ring PAHs appears to be more consistent with a biogenic or pyrogenic origin. Based on relative contributions to the overall PAH budget, a petrogenic source appears to be dominant. However, the pyrene/fluoranthene ratio is more consistent with a source derived from peat. The alkylated PAH profiles are inconsistent with those in the Athabasca River system, and supports a previously published hypothesis that the contribution of PAHs from the Athabasca oil sands to the lower Mackenzie River is minimal. A double ratio plot of chrysene vs dibenzothiophene, diagnostic of weathering, suggests most weathering occurred before the sediments were deposited in the lakes, while a double ratio plot of dibenzothiophene vs phenanthrene suggests a common source of PAHs across the delta, despite differing water sources from east to west across the delta. PAH inputs to the delta appear to mirror sediment inputs documented in previous work, where high sediment input from the Mackenzie mainstem during high floods dominates the delta sediment influx and masks any influence of the Peel River.


Assuntos
Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Canadá , Desastres , Monitoramento Ambiental , Solo , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...