Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11747-11754, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496930

RESUMO

In this paper, we present an ALD process for ScF3 using Sc(thd)3 and NH4F as precursors. This is the first material made by ALD that has a negative thermal expansion over a wide-temperature range. Crystalline films were obtained at the deposition temperatures of 250-375 °C, with a growth per cycle (GPC) increasing along the deposition temperature from 0.16 to 0.23 Å. Saturation of the GPC with respect to precursor pulses and purges was studied at 300 °C. Saturation was achieved with Sc(thd)3, whereas soft saturation was achieved with NH4F. The thickness of the films grows linearly with the number of applied ALD cycles. The F/Sc ratio is 2.9:3.1 as measured by ToF-ERDA. The main impurity is hydrogen with a maximum content of 3.0 at %. Also carbon and oxygen impurities were found in the films with maximum contents of 0.5 and 1.6 at %. The ScF3 process was also combined with an ALD AlF3 process to deposit ScxAlyFz films. In the AlF3 process, AlCl3 and NH4F were used as precursors. It was possible to modify the thermal expansion properties of ScF3 by Al3+ addition. The ScF3 films shrink upon annealing, whereas the ScxAlyFz films show thermal expansion, as measured with HTXRD. The thermal expansion becomes more pronounced as the Al content in the film is increased.

2.
Dalton Trans ; 52(31): 10844-10854, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486012

RESUMO

The present study describes atomic layer deposition (ALD) processes and characterization of CoF2, NiF2, and HoF3 thin films. For CoF2 deposition CoCl2(TMEDA) (TMEDA = N,N,N',N'-tetramethylethylenediamine) and NH4F were used as precursors. CoF2 deposition was studied at 180-275 °C, resulting in a growth per cycle (GPC) of 0.7 to 1.2 Å. All the films consist of tetragonal CoF2 according to XRD. The impurity contents were measured with ToF-ERDA and less than 1 at% of N and Cl were detected in the films, indicating effective reactions. In addition, the F/Co ratio is close to 2 as measured by the same method. The saturation of the GPC with respect to precursor pulses and purges was verified at 250 °C. The common feature of ALD metal fluoride films - remarkable roughness - is encountered also in this process. However, the films became smoother as the deposition temperature was increased. CoF2 deposition was also demonstrated on graphite substrates. NiF2 deposition was studied at 210-250 °C by using Ni(thd)2 and TaF5 or a new fluoride source NbF5 as the precursors. Tetragonal NiF2 was obtained, but the oxygen and hydrogen contents in the films were remarkable, up to ∼11 at%, as measured by ToF-ERDA. This was observed also when the films were in situ capped with YF3. NbF5 was shown to be a potential fluoride precursor by combining it with Ho(thd)3 to deposit HoF3 films. Orthorhombic HoF3 was obtained at deposition temperatures of 200-275 °C. The films deposited at 235-275 °C are pure, and the Nb contents in films deposited at 250 and 275 °C are only 0.21 and 0.15 at%. The main impurity in both films is oxygen, but the contents are only 1.5 and 1.6 at%. The saturation of the GPC with respect to precursor pulses was verified at 250 °C. The GPC is ∼1 Å.

3.
Dalton Trans ; 52(28): 9622-9630, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37377382

RESUMO

Atomic layer deposition processes with inherent substrate selectivity are more straightforward for area-selective atomic layer deposition (AS-ALD) than approaches using surface passivation or activation with self-assembled monolayers (SAMs), small molecule inhibitors (SMIs) or seed layers. Here, ALD of ZnS using elemental zinc and sulfur as precursors is reported to have excellent inherent selectivity. At 400-500 °C for 250 cycles, substantial ZnS growth was observed on Ti and TiO2 surfaces while no growth was measured on native SiO2 and Al2O3 surfaces. On TiO2, the ZnS growth rate remains constant at 1.0 Å per cycle at temperatures of 400-500 °C. On Ti, in contrast, the initial growth rate increases significantly from 1.2 Å per cycle at 350 °C to 6.2 Å per cycle at 500 °C. The high growth rates on Ti are believed to be caused by CVD-like growth during the early ALD cycles, arising from the reservoir effect of the Ti layer for Zn atoms. After the first 100 cycles, the growth rate decreases from 3.5 to 1.0 Å per cycle, the same as the growth rate on TiO2. Selective adsorption of sulfur on TiO2 over Al2O3 and SiO2 is assumed to be the selectivity mechanism on TiO2. Self-aligned deposition of ZnS was successfully demonstrated on a micrometer-scale Ti/native SiO2 pattern and on a nanometer-scale TiO2/Al2O3 pattern at 450 °C for 250 cycles; ZnS films with a thickness of ∼80 nm were selectively deposited on Ti over native SiO2, and ZnS films with a thickness of ∼23 nm were selectively deposited on TiO2 over Al2O3.

4.
Nanoscale Adv ; 4(19): 4102-4113, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36285221

RESUMO

Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid.

5.
Dalton Trans ; 51(39): 15142-15157, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129328

RESUMO

Atomic layer deposition offers outstanding film uniformity and conformality on substrates with high aspect ratio features. These qualities are essential for mixed-halide perovskite films applied in tandem solar cells, transistors and light-emitting diodes. The optical and electronic properties of mixed-halide perovskites can be adjusted by adjusting the ratios of different halides. So far ALD is only capable of depositing iodine-based halide perovskites whereas other halide processes are lacking. We describe six new low temperature (≤100 °C) ALD processes for PbCl2 and PbBr2 that are crucial steps for the deposition of mixed-halide perovskites with ALD. Lead bis[bis(trimethylsilyl)amide]-GaCl3 and -TiBr4 processes yield the purest, crystalline, uniform and conformal films of PbCl2 and PbBr2 respectively. We show that these two processes in combination with a PbI2 process from the literature deposit mixed lead halide films. The four less optimal processes revealed that reaction by-products in lead halide deposition processes may cause film etching or incorporate themselves into the film.

6.
Dalton Trans ; 50(38): 13264-13275, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608915

RESUMO

Co9S8 is an interesting sulfide material with metallic conductivity that has shown promise for various energy applications. Herein, we report a new atomic layer deposition process producing crystalline, pure, and highly conductive Co9S8 thin films using CoCl2(TMEDA) (TMEDA = N,N,N',N'-tetramethylethylenediamine) and H2S as precursors at 180-300 °C. The lowest resistivity of 80 µΩ cm, best uniformity, and highest growth rate are achieved at 275 °C. Area-selective deposition is enabled by inherent substrate-dependency of film nucleation. We show that a continuous and conductive Co9S8 film can be prepared on oxide-covered silicon without any growth on Si-H. Besides silicon, Co9S8 films can be grown on a variety of substrates. The first example of an epitaxial Co9S8 film is shown using a GaN substrate. The Co9S8 films are stable up to 750 °C in N2, 400 °C in forming gas, and 225 °C in O2 atmosphere. The reported ALD process offers a scalable and cost-effective route to high-quality Co9S8 films, which are of interest for applications ranging from electrocatalysis and rechargeable batteries to metal barrier and liner layers in microelectronics and beyond.

7.
ACS Omega ; 6(27): 17545-17554, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278140

RESUMO

Because of its high conductivity and intrinsic stability, poly(3,4-ethylenedioxythiophene (PEDOT) has gained great attention both in academic research and industry over the years. In this study, we used the oxidative molecular layer deposition (oMLD) technique to deposit PEDOT from 3,4-ethylenedioxythiophene (EDOT) and a new inorganic oxidizing agent, rhenium pentachloride (ReCl5). We extensively characterized the properties of the films by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Raman, and conductivity measurements. The oMLD of polymers is based on the sequential adsorption of the monomer and its oxidation-induced polymerization. However, oMLD has been scarcely used because of the challenge of finding a suitable combination of volatile, reactive, and stable organic monomers applicable at high temperatures. ReCl5 showed promising properties in oMLD because it has high thermal stability and high oxidizing ability for EDOT. PEDOT films were deposited at temperatures of 125-200 °C. EDS and XPS measurements showed that the as-deposited films contained residues of rhenium and chlorine, which could be removed by rinsing the films with deionized water. The polymer films were transparent in the visible region and showed relatively high electrical conductivities within the 2-2000 S cm-1 range.

8.
ACS Appl Mater Interfaces ; 13(3): 4156-4164, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33443398

RESUMO

High-performance p-type oxide thin film transistors (TFTs) have great potential for many semiconductor applications. However, these devices typically suffer from low hole mobility and high off-state currents. We fabricated p-type TFTs with a phase-pure polycrystalline Cu2O semiconductor channel grown by atomic layer deposition (ALD). The TFT switching characteristics were improved by applying a thin ALD Al2O3 passivation layer on the Cu2O channel, followed by vacuum annealing at 300 °C. Detailed characterization by transmission electron microscopy-energy dispersive X-ray analysis and X-ray photoelectron spectroscopy shows that the surface of Cu2O is reduced following Al2O3 deposition and indicates the formation of a 1-2 nm thick CuAlO2 interfacial layer. This, together with field-effect passivation caused by the high negative fixed charge of the ALD Al2O3, leads to an improvement in the TFT performance by reducing the density of deep trap states as well as by reducing the accumulation of electrons in the semiconducting layer in the device off-state.

9.
PLoS One ; 15(2): e0227811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32023266

RESUMO

Anopheles darlingi is the main vector of malaria in Brazil, characterized by a high level of anthropophilia and endophagy. Imidacloprid, thiacloprid, and acetamiprid are the most widespread insecticides of the neonicotinoid group. However, they produce adverse effects on the non-target insects. Flupyradifurone has been marketed as an alternative to non-fluorinated neonicotinoids. Neonicotinoids containing trifluoroacethyl substituent reveal increased insecticidal activity due to higher hydrophobicity and metabolic stability. We synthesized novel neonicotinoid insecticides containing fluorinated acceptor groups and their interactions were estimated with the nicotinic acetylcholine receptor (nAChR) binding site by molecular docking studies, to evaluate their larvicidal activity against A. darlingi, and to assess their outdoor photodegradation behavior. New neonicotinoid analogues were prepared and characterized by NMR and mass-spectrometry. The synthesized molecules were modelled by time-dependent density functional theory and analyzed, their interaction with nAChR was investigated by molecular docking. Their insecticide activity was tested on Anopheles larvae collected in suburban area of Manaus, Brazil. Four new fluorinated neonicotinoid analogs were prepared and tested against 3rd instars larvae of A. darlingi showing high larvicidal activity. Docking studies reveal binding modes of the synthesized compounds and suggest that their insecticidal potency is governed by specific interactions with the receptor binding site and enhanced lipophilicity. 2-Chloro-5-(2-trifluoromethyl-pyrrolidin-1-ylmethyl)pyridine 5 showed fast degradation in water maintaining high larvicidal activity. All obtained substances possessed high larvicidal activity in low concentrations in 48 hours of exposure, compared to commercial flupyradifurone. Such activity is connected to a unique binding pattern of the synthesized compounds to insect's nAChR and to their enhanced bioavailability owing to introduction of fluorinated amino-moieties. Therefore, the compounds in question have a high potential for application as control agents for insects transmitting tropical diseases, and they will be less persistent in the environment.


Assuntos
Anopheles/efeitos dos fármacos , Halogenação , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Neonicotinoides/toxicidade , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/toxicidade , Animais , Inseticidas/química , Larva/efeitos dos fármacos , Neonicotinoides/síntese química , Neonicotinoides/química , Piridinas/química , Piridinas/toxicidade , Espectrofotometria Ultravioleta , Eletricidade Estática
10.
Nanomaterials (Basel) ; 10(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023933

RESUMO

TiO2 and ZnO single and multilayers were deposited on hydroxyl functionalized multi-walled carbon nanotubes using atomic layer deposition. The bare carbon nanotubes and the resulting heterostructures were characterized by TG/DTA, Raman, XRD, SEM-EDX, XPS, TEM-EELS-SAED and low temperature nitrogen adsorption techniques, and their photocatalytic and gas sensing activities were also studied. The carbon nanotubes (CNTs) were uniformly covered with anatase TiO2 and wurtzite ZnO layers and with their combinations. In the photocatalytic degradation of methyl orange, the most beneficial structures are those where ZnO is the external layer, both in the case of single and double oxide layer covered CNTs (CNT-ZnO and CNT-TiO2-ZnO). The samples with multilayer oxides (CNT-ZnO-TiO2 and CNT-TiO2-ZnO) have lower catalytic activity due to their larger average densities, and consequently lower surface areas, compared to single oxide layer coated CNTs (CNT-ZnO and CNT-TiO2). In contrast, in gas sensing it is advantageous to have TiO2 as the outer layer. Since ZnO has higher conductivity, its gas sensing signals are lower when reacting with NH3 gas. The double oxide layer samples have higher resistivity, and hence a larger gas sensing response than their single oxide layer counterparts.

11.
Nanotechnology ; 31(19): 195713, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31978899

RESUMO

Amorphous SiO2-Nb2O5 nanolaminates and mixture films were grown by atomic layer deposition. The films were grown at 300 °C from Nb(OC2H5)5, Si2(NHC2H5)6, and O3 to thicknesses ranging from 13 to 130 nm. The niobium to silicon atomic ratio was varied in the range of 0.11-7.20. After optimizing the composition, resistive switching properties could be observed in the form of characteristic current-voltage behavior. Switching parameters in the conventional regime were well defined only in a SiO2:Nb2O5 mixture at certain, optimized, composition with Nb:Si atomic ratio of 0.13, whereas low-reading voltage measurements allowed recording memory effects in a wider composition range.

12.
ACS Omega ; 4(6): 11205-11214, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460221

RESUMO

Herein, we report an atomic layer deposition (ALD) process for Cu2O thin films using copper(II) acetate [Cu(OAc)2] and water vapor as precursors. This precursor combination enables the deposition of phase-pure, polycrystalline, and impurity-free Cu2O thin films at temperatures of 180-220 °C. The deposition of Cu(I) oxide films from a Cu(II) precursor without the use of a reducing agent is explained by the thermally induced reduction of Cu(OAc)2 to the volatile copper(I) acetate, CuOAc. In addition to the optimization of ALD process parameters and characterization of film properties, we studied the Cu2O films in the fabrication of photoconductor devices. Our proof-of-concept devices show that approximately 20 nm thick Cu2O films can be used for photodetection in the visible wavelength range and that the thin film photoconductors exhibit improved device characteristics in comparison to bulk Cu2O crystals.

13.
Nanomaterials (Basel) ; 9(1)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669454

RESUMO

Titanium dioxide nanotubes/hydroxyapatite nanocomposites were produced on a titanium alloy (Ti6Al4V/TNT/HA) and studied as a biocompatible coating for an implant surface modification. As a novel approach for this type of nanocomposite fabrication, the atomic layer deposition (ALD) method with an extremely low number of cycles was used to enrich titania nanotubes (TNT) with a very thin hydroxyapatite coating. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for determination of the structure and the surface morphology of the fabricated nanocoatings. The biointegration activity of the layers was estimated based on fibroblasts' proliferation on the TNT/HA surface. The antibacterial activity was determined by analyzing the ability of the layers to inhibit bacterial colonization and biofilm formation. Mechanical properties of the Ti6Al4V/TNT/HA samples were estimated by measuring the hardness, Young's module, and susceptibility to scratching. The results revealed that the nanoporous titanium alloy coatings enriched with a very thin hydroxyapatite layer may be a promising way to achieve the desired balance between biofunctional and biomechanical properties of modern implants.

14.
Angew Chem Int Ed Engl ; 57(44): 14538-14542, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30048031

RESUMO

Rhenium is both a refractory metal and a noble metal that has attractive properties for various applications. Still, synthesis and applications of rhenium thin films have been limited. We introduce herein the growth of both rhenium metal and rhenium nitride thin films by the technologically important atomic layer deposition (ALD) method over a wide deposition temperature range using fast, simple, and robust surface reactions between rhenium pentachloride and ammonia. Films are grown and characterized for compositions, surface morphologies and roughnesses, crystallinities, and resistivities. Conductive rhenium subnitride films of tunable composition are obtained at deposition temperatures between 275 and 375 °C, whereas pure rhenium metal films grow at 400 °C and above. Even a just 3 nm thick rhenium film is continuous and has a low resistivity of about 90 µΩ cm showing potential for applications for which also other noble metals and refractory metals have been considered.

15.
Small ; 14(21): e1800547, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29673074

RESUMO

Semiconducting 2D materials, such as SnS2 , hold immense potential for many applications ranging from electronics to catalysis. However, deposition of few-layer SnS2 films has remained a great challenge. Herein, continuous wafer-scale 2D SnS2 films with accurately controlled thickness (2 to 10 monolayers) are realized by combining a new atomic layer deposition process with low-temperature (250 °C) postdeposition annealing. Uniform coating of large-area and 3D substrates is demonstrated owing to the unique self-limiting growth mechanism of atomic layer deposition. Detailed characterization confirms the 1T-type crystal structure and composition, smoothness, and continuity of the SnS2 films. A two-stage deposition process is also introduced to improve the texture of the films. Successful deposition of continuous, high-quality SnS2 films at low temperatures constitutes a crucial step toward various applications of 2D semiconductors.

16.
Adv Mater ; 30(24): e1703622, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29315833

RESUMO

2D materials research is advancing rapidly as various new "beyond graphene" materials are fabricated, their properties studied, and materials tested in various applications. Rhenium disulfide is one of the 2D transition metal dichalcogenides that has recently shown to possess extraordinary properties such as that it is not limited by the strict monolayer thickness requirements. The unique inherent decoupling of monolayers in ReS2 combined with a direct bandgap and highly anisotropic properties makes ReS2 one of the most interesting 2D materials for a plethora of applications. Here, a highly controllable and precise atomic layer deposition (ALD) technique is applied to deposit ReS2 thin films. Film growth is demonstrated on large area (5 cm × 5 cm) substrates at moderate deposition temperatures between 120 and 500 °C, and the films are extensively characterized using field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, X-ray diffractometry using grazing incidence, atomic force microscopy, focused ion beam/transmission electron microscopy, X-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The developed ReS2 ALD process highlights the potential of the material for applications beyond planar structure architectures. The ALD process also offers a route to an upgrade to an industrial scale.

17.
Nanotechnology ; 29(5): 055301, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29215346

RESUMO

We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

18.
Nanomaterials (Basel) ; 7(7)2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737725

RESUMO

Plasma enhanced atomic layer deposition (PEALD) of silver nanoparticles on the surface of 1-D titania coatings, such as nanotubes (TNT) and nanoneedles (TNN), has been carried out. The formation of TNT and TNN layers enriched with dispersed silver particles of strictly defined sizes and the estimation of their bioactivity was the aim of our investigations. The structure and the morphology of produced materials were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron miscroscopy (SEM). Their bioactivity and potential usefulness in the modification of implants surface have been estimated on the basis of the fibroblasts adhesion and proliferation assays, and on the basis of the determination of their antibacterial activity. The cumulative silver release profiles have been checked with the use of inductively coupled plasma-mass spectrometry (ICPMS), in order to exclude potential cytotoxicity of silver decorated systems. Among the studied nanocomposite samples, TNT coatings, prepared at 3, 10, 12 V and enriched with silver nanoparticles produced during 25 cycles of PEALD, revealed suitable biointegration properties and may actively counteract the formation of bacterial biofilm.

19.
Int J Pharm ; 525(1): 160-174, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432020

RESUMO

Active pharmaceutical ingredients (APIs) are predominantly organic solid powders. Due to their bulk properties many APIs require processing to improve pharmaceutical formulation and manufacturing in the preparation for various drug dosage forms. Improved powder flow and protection of the APIs are often anticipated characteristics in pharmaceutical manufacturing. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD, utilizing common chemistries for Al2O3, TiO2 and ZnO, is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating process and maintains its stable polymorphic structure. Acetaminophen with nanometer scale ALD coatings shows slowed drug release. ALD TiO2 coated acetaminophen particles show cytocompatibility whereas those coated with thicker ZnO coatings exhibit the most cytotoxicity among the ALD materials under study when assessed in vitro by their effect on intestinal Caco-2 cells.


Assuntos
Acetaminofen/química , Excipientes/química , Nanotecnologia , Células CACO-2 , Humanos , Pós , Propriedades de Superfície
20.
Int J Nanomedicine ; 11: 6771-6780, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008252

RESUMO

BACKGROUND: Coordination compounds of pentavalent antimony have been, and remain, the first-line drugs in leishmaniasis treatment for >70 years. Molecular forms of Sb (V) complexes are commercialized as sodium stibogluconate (Pentostam®) and meglumine antimoniate (MA) (Glucantime®). Ever-increasing drug resistance in the parasites limits the use of antimonials, due to the low drug concentrations being administered against high parasitic counts. Sb5+ toxicity provokes severe side effects during treatment. To enhance therapeutic potency and to increase Sb (V) concentration within the target cells, we decided to try a new active substance form, a hydrosol of Sb2O5·nH2O nanoparticles (NPs), instead of molecular drugs. METHODOLOGY/PRINCIPAL FINDINGS: Sb2O5·nH2O NPs were synthesized by controlled SbCl5 hydrolysis in a great excess of water. Sb2O5·nH2O phase formation was confirmed by X-ray diffraction. The surface of Sb (V) NPs was treated with ligands with a high affinity for target cell membrane receptors. The mean particle size determined by dynamic light scattering and transmission electron microscopy was ~35-45 nm. In vitro tests demonstrated a 2.5-3 times higher antiparasitic activity of Sb (V) nanohybrid hydrosols, when compared to MA solution. A similar comparison for in vivo treatment of experimental cutaneous leishmaniasis with Sb5+ nanohybrids showed a 1.75-1.85 times more effective decrease in the lesions. Microimages of tissue fragments confirmed the presence of NPs inside the cytoplasm of infected macrophages. CONCLUSION/SIGNIFICANCE: Sb2O5·nH2O hydrosols are proposed as a new form of treatment for cutaneous leishmaniasis caused by Leishmania amazonensis. The NPs penetrate directly into the affected cells, creating a high local concentration of the drug, a precondition to overcoming the parasite resistance to molecular forms of pentavalent antimonials. The nanohybrids are more effective at a lower dose, when compared to MA, the molecular drug. Our data suggest that the new form of treatment has the potential to reduce and simplify the course of cutaneous leishmaniasis treatment. At the same time, Sb2O5·nH2O hydrosols provide an opportunity to avoid toxic antimony (V) spreading throughout the body.


Assuntos
Antimônio/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Nanopartículas/química , Óxidos/farmacologia , Animais , Antimônio/química , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/tratamento farmacológico , Masculino , Mesocricetus , Microscopia Eletrônica de Transmissão , Óxidos/química , Tamanho da Partícula , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...