Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 33(23): 3043-53, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23893244

RESUMO

The PI3K/PDK1/Akt signaling axis is centrally involved in cellular homeostasis and controls cell growth and proliferation. Due to its key function as regulator of cell survival and metabolism, the dysregulation of this pathway is manifested in several human pathologies including cancers and immunological diseases. Thus, current therapeutic strategies target the components of this signaling cascade. In recent years, numerous feedback loops have been identified that attenuate PI3K/PDK1/Akt-dependent signaling. Here, we report the identification of an additional level of feedback regulation that depends on the negative transcriptional control of phosphatidylinositol 3-kinase (PI3K) class IA subunits. Genetic deletion of 3-phosphoinositide-dependent protein kinase 1 (PDK1) or the pharmacological inhibition of its downstream effectors, that is, Akt and mammalian target of rapamycin (mTOR), relieves this suppression and leads to the upregulation of PI3K subunits, resulting in enhanced generation of phosphatidylinositol-3,4,5-trisphosphate (PIP3). Apparently, this transcriptional induction is mediated by the concerted action of different transcription factor families, including the transcription factors cAMP-responsive element-binding protein and forkhead box O. Collectively, we propose that PDK1 functions as a cellular sensor that balances basal PIP3 generation at levels sufficient for survival but below a threshold being harmful to the cell. Our study suggests that the efficiency of therapies targeting the aberrantly activated PI3K/PDK1/Akt pathway might be increased by the parallel blockade of feedback circuits.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/genética , Galinhas , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células Jurkat , Fosfatidilinositol 3-Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Serina-Treonina Quinases TOR/antagonistas & inibidores
2.
Oncogene ; 32(37): 4417-26, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23085752

RESUMO

Genetic changes in HER2, PTEN, PIK3CA and AKT1 are all common in breast cancer and lead to the elevated phosphorylation of downstream targets of the PI3K/AKT signalling pathway. Changes in HER2, PTEN, PIK3CA and AKT have all been reported to lead to both enhanced proliferation and failures in hollow lumen formation in three dimensional epithelial culture models, but it is not clear whether these failures in lumen formation are caused by any failure in the spatial coordination of lumen formation (hollowing) or purely a failure in the apoptosis and clearance of luminal cells (cavitation). Here, we use normal murine mammary gland (NMuMG) epithelial cells, which form a hollow lumen without significant apoptosis, to compare the transformation by these four genetic changes. We find that either mutant PIK3CA expression or PTEN loss, but not mutant AKT1 E17K, cause disrupted epithelial architecture, whereas HER2 overexpression drives strong proliferation without affecting lumen formation in these cells. We also show that PTEN requires both lipid and protein phosphatase activity, its extreme C-terminal PDZ binding sequence and probably Myosin 5A to control lumen formation through a mechanism that does not correlate with its ability to control AKT, but which is selectively lost through mutation in some tumours. These findings correlate AKT-independent signalling activated by mutant PIK3CA or PTEN loss, but not strongly by HER2, with disrupted epithelial architecture and tumour formation.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Deleção de Genes , Mutação , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cromonas/farmacologia , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Morfolinas/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo
3.
Oncogene ; 29(5): 687-97, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19915616

RESUMO

PTEN is a tumour suppressor with phosphatase activity in vitro against both lipids and proteins and other potential non-enzymatic mechanisms of action. Although the importance of PTEN's lipid phosphatase activity in regulating the PI3K signalling pathway is recognized, the significance of PTEN's other mechanisms of action is currently unclear. In this study, we describe the systematic identification of a PTEN mutant, PTEN Y138L, with activity against lipid, but not soluble substrates. Using this mutant, we provide evidence for the interfacial activation of PTEN against lipid substrates. We also show that when re-expressed at physiological levels in PTEN null U87MG glioblastoma cells, the protein phosphatase activity of PTEN is not required to regulate cellular PtdInsP(3) levels or the downstream protein kinase Akt/PKB. Finally, in three-dimensional Matrigel cultures of U87MG cells similarly re-expressing PTEN mutants, both the protein and lipid phosphatase activities were required to inhibit invasion, but either activity alone significantly inhibited proliferation, albeit only weakly for the protein phosphatase activity. Our data provide a novel tool to address the significance of PTEN's separable lipid and protein phosphatase activities and suggest that both activities suppress proliferation and together suppress invasion.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Humanos , Metabolismo dos Lipídeos , PTEN Fosfo-Hidrolase/genética , Proteínas/metabolismo
4.
Oncogene ; 27(41): 5464-76, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18794881

RESUMO

The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). Here, we discuss the concept of PTEN as an 'interfacial enzyme', which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P(2) and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP(3), which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP(3) metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P(2), may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.


Assuntos
Polaridade Celular/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Camundongos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação
5.
Oncogene ; 27(29): 4086-95, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18332865

RESUMO

Ectopic expression of mutant forms of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) lacking lipid (G129E) or lipid and protein (C124S) phosphatase activity decreased sensitivity of MCF-7 breast cancer cells, which have wild-type PTEN, to doxorubicin and increased sensitivity to the mammalian target of rapamycin (mTOR) inhibitor rapamycin. Cells transfected with a mutant PTEN gene lacking both lipid and protein phosphatase activities were more resistant to doxorubicin than cells transfected with the PTEN mutant lacking lipid phosphatase activity indicating that the protein phosphatase activity of PTEN was also important in controlling the sensitivity to doxorubicin, while no difference was observed between the lipid (G129E) and lipid and protein (C124S) phosphatase PTEN mutants in terms of sensitivity to rapamycin. A synergistic inhibitory interaction was observed when doxorubicin was combined with rapamycin in the phosphatase-deficient PTEN-transfected cells. Interference with the lipid phosphatase activity of PTEN was sufficient to activate Akt/mTOR/p70S6K signaling. These studies indicate that disruption of the normal activity of the PTEN phosphatase can have dramatic effects on the therapeutic sensitivity of breast cancer cells. Mutations in the key residues which control PTEN lipid and protein phosphatase may act as dominant-negative mutants to suppress endogenous PTEN and alter the sensitivity of breast cancer patients to chemo- and targeted therapies.


Assuntos
Neoplasias da Mama/enzimologia , Resistencia a Medicamentos Antineoplásicos , Mutação de Sentido Incorreto , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Antibióticos Antineoplásicos/agonistas , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Doxorrubicina/agonistas , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Expressão Gênica , Humanos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/agonistas , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR , Transfecção
6.
Oncogene ; 26(50): 7132-42, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17486056

RESUMO

Many tumors have chronically elevated activity of PI 3-kinase-dependent signaling pathways, caused largely by oncogenic mutation of PI 3-kinase itself or loss of the opposing tumor suppressor lipid phosphatase, PTEN. Several PI 3-kinase-dependent feedback mechanisms have been identified that may affect the sensitivity of upstream receptor signaling, but the events required to initiate an inhibited state have not been addressed. We show that in a variety of cell types, loss of PTEN via experimental knockdown or in tumor cell lines correlates with a block in insulin-like growth factor 1 (IGF1)/insulin signaling, without affecting the sensitivity of platelet-derived growth factor or epidermal growth factor signaling. These effects on IGF/insulin signaling include a reduction of up to five- to tenfold in IGF-stimulated PI 3-kinase activation, a failure to activate the ERK kinases and, in some cells, reduced expression of insulin receptor substrate 1, and both IGF1 and insulin receptors. These data indicate that chronically elevated PI 3-kinase-dependent signaling to the degree seen in many tumors causes a selective loss of sensitivity in IGF1/insulin signaling that could significantly reduce the selective advantage of deregulated activation of IGF1/IGF1-R signaling in tumor development.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Insulina/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Humanos , Insulina/fisiologia , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Camundongos , Células NIH 3T3 , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/biossíntese , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatos de Fosfatidilinositol/metabolismo
7.
Biochem Soc Trans ; 35(Pt 2): 188-92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17371235

RESUMO

The lipid phosphatase, PTEN (phosphatase and tensin homologue deleted on chromosome 10), is the product of a major tumour suppressor gene that antagonizes PI3K (phosphoinositide 3-kinase) signalling by dephosphorylating the 3-position of the inositol ring of PtdIns(3,4,5)P(3). PtdIns(3,4,5)P(3) is also metabolized by removal of the 5-phosphate catalysed by a distinct family of enzymes exemplified by SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] and SHIP2. Mouse knockout studies, however, suggest that PTEN and SHIP2 have profoundly different biological functions. One important reason for this is likely to be that SHIP2 exists in a relatively inactive state until cells are exposed to growth factors or other stimuli. Hence, regulation of SHIP2 is geared towards stimulus dependent antagonism of PI3K signalling. PTEN, on the other hand, appears to be active in unstimulated cells and functions to maintain basal PtdIns(3,4,5)P(3) levels below the critical signalling threshold. We suggest that concomitant inhibition of cysteine-dependent phosphatases, such as PTEN, with activation of SHIP2 functions as a metabolic switch to regulate independently the relative levels of PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).


Assuntos
Lipídeos/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Homeostase , Humanos , Fosfatos de Inositol/metabolismo , Leptina/fisiologia , Mutação , Estresse Oxidativo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais
8.
Biochem Soc Trans ; 33(Pt 6): 1507-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16246156

RESUMO

In vertebrates, the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) regulates many cellular processes through its PtdIns(3,4,5)P3 lipid phosphatase activity, antagonizing PI3K (phosphoinositide 3-kinase) signalling. Given the important role of PI3Ks in the regulation of directed cell migration and the role of PTEN as an inhibitor of migration, it is somewhat surprising that data now indicate that PTEN is able to regulate cell migration independent of its lipid phosphatase activity. Here, we discuss the role of PTEN in the regulation of cell migration.


Assuntos
Movimento Celular/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Animais , Humanos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
9.
Biochem Soc Trans ; 32(Pt 6): 1018-20, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15506952

RESUMO

Although reactive oxygen species play important roles in cellular physiology as signalling molecules, their molecular targets are largely unknown. A probable group of targets for mediating many of the effects of reactive oxygen species on cell signalling is the large diverse family of cysteine-dependent phosphatases, which includes the protein tyrosine phosphatases. Our work and that of others suggest that the oxidative inactivation of protein and lipid phosphatases plays an important part in signalling, downstream of many cellular stimuli. Future studies should give us a clearer picture of the role of phosphatase inactivation in cellular behaviour and explain how specificity is achieved in redox signalling.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Cinética , Modelos Biológicos , Oxirredução , Transdução de Sinais/fisiologia
10.
Biochem Soc Trans ; 32(Pt 2): 338-42, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15046604

RESUMO

PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a member of the protein tyrosine phosphatase family that is structurally adapted to facilitate the metabolism of 3-phosphoinositide lipid second messengers, especially PtdIns(3,4,5) P (3). Cellular PTEN activity is restrained by the retention of C-terminally phosphorylated enzyme in the cytosol. Dephosphorylation by as yet undefined phosphatases initiates an electrostatic switch which targets PTEN specifically to the plasma membrane, where it binds through multiple positively charged residues in both the C2 and N-terminal domains and is susceptible to feedback regulation through proteolytic degradation. PTEN also forms signalling complexes with PDZ domain-containing adaptors, such as the MAGUK (membrane-associated guanylate kinase) proteins, interactions which appear to be necessary for metabolism of localized pools of PtdIns(3,4,5) P (3) involved in regulating actin cytoskeleton dynamics. TPIP [TPTE (transmembrane phosphatase with tensin homology) and PTEN homologous inositol lipid phosphatase] is a novel gene product which exists in multiply spliced forms. TPIPalpha has PtdIns(3,4,5) P (3) 3-phosphatase activity and is localized to the endoplasmic reticulum, via two transmembrane spanning regions, where it may metabolize PtdIns(3,4,5) P (3) that appears to be unaffected by expressed PTEN. PTEN can be acutely regulated by oxidative stress and by endogenously produced reactive oxygen species. This mechanism provides a novel means to stimulate phosphoinositide 3-kinase-dependent signalling pathways, which may be important in circumstances where PtdIns(3,4,5) P (3) and oxidants are produced concurrently.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Lipídeos/química , Oxirredução , Monoéster Fosfórico Hidrolases/química , Espécies Reativas de Oxigênio , Proteínas Supressoras de Tumor/química , Sequência de Aminoácidos , Ânions , Sítios de Ligação , Domínio Catalítico , Citosol/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Oxidantes/química , Estresse Oxidativo , Oxigênio/química , PTEN Fosfo-Hidrolase , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Tempo
12.
Biochem Soc Trans ; 29(Pt 6): 846-51, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11709086

RESUMO

The tumour suppressor protein, PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a member of the mixed function, serine/threonine/tyrosine phosphatase subfamily of protein phosphatases. Its physiological substrates, however, are primarily 3-phosphorylated inositol phospholipids, which are products of phosphoinositide 3-kinases. PTEN thus antagonizes PI 3-kinase-dependent signalling pathways, which explains to a large extent its tumour suppressor status. We have examined the kinetic behaviour, substrate specificity and regulation of PTEN both in vitro and in a variety of cellular models. Although PTEN can utilize both phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and its water-soluble headgroup, inositol 1,3,4,5-tetrakisphosphate, as substrates, it displays classical features of interfacial catalysis, which greatly favour the lipid substrate (by as much as 1000-fold as judged by K(cat)/K(m) values). Expression of PTEN in U87 cells (which lack endogenous PTEN) and measuring the levels of all known 3-phosphorylated lipids suggests that phosphatidylinositol 3,4-bisphosphate and PtdIns(3,4,5)P(3) are both substrates, but that phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate are not. PTEN binds to several PDZ-domain-containing proteins via a consensus sequence at its extreme C-terminus. Disruption of targeting to PDZ-domain proteins selectively blocks some PTEN functions, but not others, suggesting the existence of spatially localized, functionally dedicated pools of signalling lipids. We have also shown recently that PTEN expression is controlled at the transcriptional level and is profoundly upregulated by peroxisome proliferator activated receptor gamma agonists, thereby providing possible implications for these drugs in diabetes, inflammation and cancer.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , PTEN Fosfo-Hidrolase , Fosfatos de Fosfatidilinositol/biossíntese , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas Supressoras de Tumor/química , Regulação para Cima
13.
Biochem J ; 360(Pt 2): 277-83, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11716755

RESUMO

The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] 3-phosphatase that plays a critical role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signalling pathway. We have identified and characterized two human homologues of PTEN, which differ with respect to their subcellular localization and lipid phosphatase activities. The previously cloned, but uncharacterized, TPTE (transmembrane phosphatase with tensin homology) is localized to the plasma membrane, but lacks detectable phosphoinositide 3-phosphatase activity. TPIP (TPTE and PTEN homologous inositol lipid phosphatase) is a novel phosphatase that occurs in several differentially spliced forms of which two, TPIP alpha and TPIP beta, appear to be functionally distinct. TPIP alpha displays similar phosphoinositide 3-phosphatase activity compared with PTEN against PtdIns(3,4,5)P(3), PtdIns(3,5)P(2), PtdIns(3,4)P(2) and PtdIns(3)P, has N-terminal transmembrane domains and appears to be localized on the endoplasmic reticulum. This is unusual as most signalling-lipid-metabolizing enzymes are not integral membrane proteins. TPIP beta, however, lacks detectable phosphatase activity and is cytosolic. TPIP has a wider tissue distribution than the testis-specific TPTE, with specific splice variants being expressed in testis, brain and stomach. TPTE and TPIP do not appear to be functional orthologues of the Golgi-localized and more distantly related murine PTEN2. We suggest that TPIP alpha plays a role in regulating phosphoinositide signalling on the endoplasmic reticulum, and might also represent a tumour suppressor and functional homologue of PTEN in some tissues.


Assuntos
Monoéster Fosfórico Hidrolases/isolamento & purificação , Homologia de Sequência de Aminoácidos , Proteínas Supressoras de Tumor/isolamento & purificação , Processamento Alternativo , Sequência de Aminoácidos , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos/genética , PTEN Fosfo-Hidrolase , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Testículo/enzimologia , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
14.
Biochem J ; 357(Pt 2): 427-35, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11439092

RESUMO

The tumour suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a lipid phosphatase which can antagonize the phosphoinositide 3-kinase (PI 3-kinase) signalling pathway, promoting apoptosis and inhibiting cell-cycle progression and cell motility. We show that very little cellular PTEN is associated with the plasma membrane, but that artificial membrane-targeting of PTEN enhances its inhibition of signalling to protein kinase B (PKB). Evidence for potential targeting of PTEN to the membrane through PDZ domain-mediated protein-protein interactions led us to use a PTEN enzyme with a deletion of the C-terminal PDZ-binding sequence, that retains full phosphatase activity against soluble substrates, and to analyse the efficiency of this mutant in different cellular assays. The extreme C-terminal PDZ-binding sequence was dispensable for the efficient down-regulation of cellular PtdIns(3,4,5)P3 levels and a number of PI 3-kinase-dependent signalling activities, including PKB and p70S6K. However, the PDZ-binding sequence was required for the efficient inhibition of cell spreading. The data show that a PTEN mutation, similar to those found in some tumours, affects some functions of the protein but not others, and implicate the deregulation of PTEN-dependent processes other than PKB activation in the development of some tumours. Significantly, this hypothesis is supported by data showing low levels of PKB phosphorylation in a glioblastoma sample carrying a mutation in the extreme C-terminus of PTEN compared with tumours carrying phosphatase-inactivating mutations of the enzyme. Our data show that deregulation of PKB is not a universal feature of tumours carrying PTEN mutations and implicate other processes that may be deregulated in these tumours.


Assuntos
Genes Supressores de Tumor , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Animais , Sequência de Bases , Adesão Celular , Linhagem Celular , Movimento Celular , Cromossomos Humanos Par 10 , Primers do DNA , Humanos , Inositol/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , PTEN Fosfo-Hidrolase , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/química , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transfecção
15.
Biochem J ; 352 Pt 3: 617-22, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11104665

RESUMO

We show here that cytochalasin D-induced depolymerization of actin filaments markedly reduces the stimulus-dependent activation of protein kinase B (PKB) in four different cell types (HEK-293 cells, L6 myotubes, 3T3-L1 adipocytes and U87MG cells). HEK-293 cells expressing the pleckstrin homology (PH) domains of PKB and general receptor for phosphoinositides-1 (GRP1) fused to green fluorescent protein (GFP) were used to monitor production of 3-phosphoinositides in the plasma membrane. Disassembly of the actin cytoskeleton significantly reduced the insulin-mediated translocation of both PKB-PH-GFP and GRP1-PH-GFP to the plasma membrane, consistent with diminished synthesis of 3-phosphoinositides. Actin depolymerization did not affect the hormonal activation of phosphoinositide 3-kinase (PI 3-kinase), and since cytochalasin D treatment also led to reduced platelet-derived growth factor (PDGF)-induced phosphorylation of PKB in U87MG cells, a PTEN (phosphatase and tensin homologue deleted on chromosome 10) null cell line, lipid phosphatase activity was unlikely to account for any reduction in cellular 3-phosphoinositides. Withdrawal of cytochalasin D from the extracellular medium induced actin filament repolymerization, and reinstated both the recruitment of PH-GFP fusion proteins to the plasma membrane and PKB activation in response to insulin and PDGF. Our findings indicate that an intact actin network is a crucial requirement for PI 3-kinase-mediated production of 3-phosphoinositides and, therefore, for the activation of PKB.


Assuntos
Actinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Substâncias de Crescimento/farmacologia , Hormônios/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Citocalasina D/farmacologia , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase , Humanos , Insulina/farmacologia , Camundongos , Músculos/citologia , Músculos/efeitos dos fármacos , Músculos/enzimologia , Músculos/metabolismo , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Fosforilação/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes de Fusão/metabolismo , Tiazóis/farmacologia , Tiazolidinas
16.
Biochem J ; 352 Pt 2: 425-33, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11085936

RESUMO

Phosphorylation of protein kinase C (PKC) provides an amplitude control that operates in conjunction with allosteric effectors. Under many conditions, PKC isotypes appear to be highly phosphorylated; however, the cellular inputs that maintain these phosphorylations are not characterized. In the present work, it is shown that there is a differential phosphorylation of PKCdelta in adherent versus suspension cultures of transfected HEK-293 cells. It is established that integrin activation is sufficient to trigger PKCdelta phosphorylation and that this signals through phosphoinositide 3-kinase (PI3-kinase) to stimulate the phosphorylation of two sites, T505 and S662. The loss of signal input to PKCdelta in suspension culture is dependent on the tumour suppressor gene PTEN, which encodes a bi-functional phosphotyrosine/phosphoinositide 3-phosphate phosphatase. In the PTEN(-/-) UM-UC-3 bladder carcinoma cell line grown in suspension, transfected PKCdelta no longer accumulates in a dephospho-form on serum removal. By contrast, in a UM-UC-3-derivative cell line stably expressing PTEN, PKCdelta does become dephosphorylated under these conditions. Employing the PTEN Gly(129)-->Glu mutant, which is selectively defective in lipid phosphatase activity, it was established that it is the lipid phosphatase activity that controls PKCdelta phosphorylation. The evidence indicates that PKCdelta phosphorylation and its latent activity are maintained in serum-deprived adherent cultures through integrin-matrix interactions. This control acts through a pathway involving a lipid product of PI3-kinase in a manner that can be suppressed by PTEN.


Assuntos
Integrina beta1/metabolismo , Isoenzimas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Supressoras de Tumor , Linhagem Celular , Ativação Enzimática , Humanos , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C-delta
17.
Biochem J ; 346 Pt 3: 827-33, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10698713

RESUMO

The tumour suppressor protein, PTEN (phosphatase and tensin homolog deleted on chromosome 10), is a phosphatase that can dephosphorylate tyrosine-containing peptides, Shc, focal adhesion kinase and phosphoinositide substrates. In cellular assays, PTEN has been shown to antagonize the PI-3K-dependent activation of protein kinase B (PKB) and to inhibit cell spreading and motility. It is currently unclear, however, whether PTEN accomplishes these effects through its lipid- or protein-phosphatase activity, although strong evidence has demonstrated the importance of the latter for tumour suppression by PTEN. By using a PTEN G129E (Gly(129)-->Glu) mutant that has lost its lipid phosphatase activity, while retaining protein phosphatase activity, we demonstrated a requirement for the lipid phosphatase activity of PTEN in the regulation of PKB activity, cell viability and membrane ruffling. We also made a small C-terminal deletion of PTEN, removing a putative PDZ (PSD95, Dlg and ZO1)-binding motif, with no detectable effect on the phosphatase activity of the protein expressed in HEK293 cells (human embryonic kidney 293 cells) assayed in vitro. Surprisingly, expression of this mutant revealed differential requirements for the C-terminus in the different functional assays. Wild-type and C-terminally deleted PTEN appeared to be equally active in down-regulating PKB activity, but this mutant enzyme had no effect on platelet-derived growth factor (PDGF)-induced membrane ruffling and was only partially active in a cell viability assay. These results stress the importance of the lipid phosphatase activity of PTEN in the regulation of several signalling pathways. They also identify a mutation, similar to mutations that occur in some human tumours, which removes the effect of PTEN on membrane ruffling but not that on PKB.


Assuntos
Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor , Sequência de Bases , Domínio Catalítico , Linhagem Celular , Primers do DNA , Humanos , PTEN Fosfo-Hidrolase , Monoéster Fosfórico Hidrolases/química
18.
Blood ; 92(12): 4798-807, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9845547

RESUMO

We have previously shown that murine ELM erythroleukemia cells can only be grown in vitro in the presence of a stromal feeder layer, or alternatively stem cell factor (SCF), without which they differentiate. When grown in the presence of SCF, ELM cells can still differentiate in response to erythropoietin (Epo), but growth on stroma prevents this. We previously isolated a stroma-independent ELM variant, ELM-I-1, that is also defective in Epo-induced differentiation. We show here that this variant has an activating mutation in the Kit receptor, converting aspartic acid 814 to histidine. Expression of the mutant receptor in stroma-dependent ELM-D cells causes growth factor-independent proliferation and also gives the cells a selective advantage, in terms of proliferation rate and clonegenicity, compared with ELM-D cells grown in optimal amounts of SCF. Expression of the mutant receptor in ELM-D cells also prevents spontaneous differentiation, but not differentiation induced by Epo. Analysis of mitogenic signaling pathways in these cells shows that the mutant receptor induces constitutive activation of p42/p44 mitogen-activated protein kinases. It also selectively inhibits the expression of p66Shc but not the p46/p52 Shc isoforms (as did treatment of ELM cells with SCF), which is of interest, because p66Shc is known to play an inhibitory role in growth factor signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Eritropoetina/farmacologia , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas , Células Estromais/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/biossíntese , Expressão Gênica , Camundongos , Fosforilação , Mutação Puntual , Biossíntese de Proteínas , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Fator de Células-Tronco/farmacologia , Transativadores/biossíntese , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
19.
EMBO J ; 14(7): 1561-70, 1995 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-7729430

RESUMO

The replication terminus region of the Escherichia coli chromosome encodes a locus, dif, that is required for normal chromosome segregation at cell division. dif is a substrate for site-specific recombination catalysed by the related chromosomally encoded recombinases XerC and XerD. It has been proposed that this recombination converts chromosome multimers formed by homologous recombination back to monomers in order that they can be segregated prior to cell division. Strains mutant in dif, xerC or xerD share a characteristic phenotype, containing a variable fraction of filamentous cells with aberrantly positioned and sized nucleoids. We show that the only DNA sequences required for wild-type dif function in the terminus region of the chromosome are contained within 33 bp known to bind XerC and XerD and that putative active site residues of the Xer recombinases are required for normal chromosome segregation. We have also shown that recombination by the loxP/Cre system of bacteriophage P1 will suppress the phenotype of a dif deletion strain when loxP is inserted in the terminus region. Suppression of the dif deletion phenotype did not occur when either dif/Xer or loxP/Cre recombination acted at other positions in the chromosome close to oriC or within lacZ, indicating that site-specific recombination must occur within the replication terminus region in order to allow normal chromosome segregation.


Assuntos
Cromossomos Bacterianos/fisiologia , Replicação do DNA , Escherichia coli/genética , Genes Bacterianos , Recombinação Genética , Sequência de Bases , Divisão Celular , Mapeamento Cromossômico , DNA Bacteriano/biossíntese , Escherichia coli/metabolismo , Genótipo , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Fenótipo , Plasmídeos , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...