Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 20(5): 921-8, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8865969

RESUMO

The effect of prenatal ethanol exposure on voltage-dependent calcium entry into neonatal-dissociated neurons was studied. Dissociated whole brain cells were isolated from neonates of prenatally ethanol-treated (ET), pair-fed (PF) control, and ad libitum (AL) control groups and loaded with fura-2. Prenatal ethanol exposure resulted in a significant reduction of calcium entry into K(+)-depolarized cells, compared with AL and PF control treatments. Initially, in dissociated cells from AL control animals, it was found that nifedipine (1 microM), omega-agatoxin (100 nM), and omega-conotoxin (500 nM), to a much lesser extent, significantly inhibited the 45 mM KCl-stimulated calcium entry. To determine the inhibitory action of prenatal ethanol exposure on N-, P-, and L-type voltage-dependent calcium channels, treatment of neonatal-dissociated neurons with different combinations of omega-conotoxin, omega-agatoxin, and nifedipine, respectively, was compared in the prenatal ethanol and control treatment groups. The inhibition of K(+)-stimulated increase in calcium entry by prenatal ethanol exposure was significantly less in the presence or absence of single antagonist conditions (ET < AL and PF). There was no apparent interaction of ethanol exposure and antagonist condition. However, the reduced calcium entry after prenatal ethanol exposure was superseded by the stronger inhibition in dual and triple antagonist conditions. The magnitude of the calcium response inhibition by the antagonist combinations was similar among the ET, PF, and AL groups. Thus, these results suggest that prenatal ethanol exposure decreases voltage-dependent calcium entry into neonatal-dissociated neurons in a manner that does not seem to involve the selective inhibition of any individual N-, P-, or L-type calcium channel.


Assuntos
Encéfalo/fisiopatologia , Canais de Cálcio/fisiologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...