Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Clin Pathol ; 161(6): 543-552, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38340346

RESUMO

OBJECTIVES: Pathologists interpreting kidney allograft biopsies using the Banff system usually start by recording component scores (eg, i, t, cg) using histopathologic criteria committed to memory. Component scores are then melded into diagnoses using the same manual/mental processes. This approach to complex Banff rules during routine sign-out produces a lack of fidelity and needs improvement. METHODS: We constructed a web-based "smart template" (software-assisted sign-out) system that uniquely starts with upstream Banff-defined additional diagnostic parameters (eg, infection) and histopathologic criteria (eg, percent interstitial inflammation) collectively referred to as feeder data that is then translated into component scores and integrated into final diagnoses using software-encoded decision trees. RESULTS: Software-assisted sign-out enables pathologists to (1) accurately and uniformly apply Banff rules, thereby eliminating human inconsistencies (present in 25% of the cohort); (2) document areas of improvement; (3) show improved correlation with function; (4) examine t-Distributed Stochastic Neighbor Embedding clustering for diagnosis stratification; and (5) ready upstream incorporation of artificial intelligence-assisted scoring of biopsies. CONCLUSIONS: Compared with the legacy approach, software-assisted sign-out improves Banff accuracy and fidelity, more closely correlates with kidney function, is practical for routine clinical work and translational research studies, facilitates downstream integration with nonpathology data, and readies biopsy scoring for artificial intelligence algorithms.


Assuntos
Transplante de Rim , Software , Humanos , Biópsia , Rim/patologia , Aloenxertos/patologia , Rejeição de Enxerto/patologia , Rejeição de Enxerto/diagnóstico
2.
Transplantation ; 103(7): 1306-1322, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30768568

RESUMO

Traditional histopathological allograft biopsy evaluation provides, within hours, diagnoses, prognostic information, and mechanistic insights into disease processes. However, proponents of an array of alternative monitoring platforms, broadly classified as "invasive" or "noninvasive" depending on whether allograft tissue is needed, question the value proposition of tissue histopathology. The authors explore the pros and cons of current analytical methods relative to the value of traditional and illustrate advancements of next-generation histopathological evaluation of tissue biopsies. We describe the continuing value of traditional histopathological tissue assessment and "next-generation pathology (NGP)," broadly defined as staining/labeling techniques coupled with digital imaging and automated image analysis. Noninvasive imaging and fluid (blood and urine) analyses promote low-risk, global organ assessment, and "molecular" data output, respectively; invasive alternatives promote objective, "mechanistic" insights by creating gene lists with variably increased/decreased expression compared with steady state/baseline. Proponents of alternative approaches contrast their preferred methods with traditional histopathology and: (1) fail to cite the main value of traditional and NGP-retention of spatial and inferred temporal context available for innumerable objective analyses and (2) belie an unfamiliarity with the impact of advances in imaging and software-guided analytics on emerging histopathology practices. Illustrative NGP examples demonstrate the value of multidimensional data that preserve tissue-based spatial and temporal contexts. We outline a path forward for clinical NGP implementation where "software-assisted sign-out" will enable pathologists to conduct objective analyses that can be incorporated into their final reports and improve patient care.


Assuntos
Diagnóstico por Computador , Interpretação de Imagem Assistida por Computador , Microscopia , Transplante de Órgãos/efeitos adversos , Complicações Pós-Operatórias/patologia , Aloenxertos , Biópsia , Sobrevivência de Enxerto , Humanos , Valor Preditivo dos Testes , Fatores de Tempo , Resultado do Tratamento , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...