Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(4)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38729193

RESUMO

Supramolecular chemistry is versatile for developing stimuli-responsive, dynamic and multifunctional structures. In the context of biomedical engineering applications, supramolecular assemblies are particularly useful as coatings for they can closely mimic the natural structure and organisation of the extracellular matrix (ECM), they can also fabricate other complex systems like drug delivery systems and bioinks. In the current context of growing medical device-associated complications and the developments in the controlled drug delivery and regenerative medicine fields, supramolecular assemblies are becoming an indispensable part of the biomedical engineering arsenal. This review covers the different supramolecular assemblies in different biomedical applications with a specific focus on antimicrobial coatings, coatings that enhance biocompatibility, surface modifications on implantable medical devices, systems that promote therapeutic efficiency in cancer therapy, and the development of bioinks. The introduced supramolecular systems include multilayer coating by polyelectrolytes, polymers incorporated with nanoparticles, coating simulation of ECM, and drug delivery systems. A perspective on the application of supramolecular systems is also included.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Humanos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais , Matriz Extracelular/metabolismo , Engenharia Biomédica/métodos , Polímeros/química , Nanopartículas/química
2.
Pain ; 162(12): 2841-2853, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769363

RESUMO

ABSTRACT: Tricyclic antidepressants that inhibit serotonin and noradrenaline reuptake, such as amitriptyline, are among the first-line treatments for neuropathic pain, which is caused by a lesion or disease affecting the somatosensory nervous system. These treatments are, however, partially efficient to alleviate neuropathic pain symptoms, and better treatments are still highly required. Interactions between neurons and glial cells participate in neuropathic pain processes, and importantly, connexins-transmembrane proteins involved in cell-cell communication-contribute to these interactions. In a neuropathic pain model in rats, mefloquine, a connexin inhibitor, has been shown to potentiate the antihyperalgesic effect of amitriptyline, a widely used antidepressant. In this study, we further investigated this improvement of amitriptyline action by mefloquine, using the cuff model of neuropathic pain in mice. We first observed that oral mefloquine co-treatment prolonged the effect of amitriptyline on mechanical hypersensitivity by 12 hours after administration. In addition, we showed that this potentiation was not due to pharmacokinetic interactions between the 2 drugs. Besides, lesional and pharmacological approaches showed that the prolonged effect was induced through noradrenergic descending pathways and the recruitment of α2 adrenoceptors. Another connexin blocker, carbenoxolone, also improved amitriptyline action. Additional in vitro studies suggested that mefloquine may also directly act on serotonin transporters and on adenosine A1 and A2A receptors, but drugs acting on these other targets failed to amplify amitriptyline action. Together, our data indicate that pharmacological blockade of connexins potentiates the therapeutic effect of amitriptyline in neuropathic pain.


Assuntos
Amitriptilina , Neuralgia , Amitriptilina/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Antidepressivos Tricíclicos , Mefloquina/uso terapêutico , Camundongos , Neuralgia/tratamento farmacológico , Ratos
3.
Eur J Med Chem ; 147: 163-182, 2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29432948

RESUMO

4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1ß) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Guanidinas/farmacologia , Inflamação/tratamento farmacológico , Modelos Biológicos , Neuralgia/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Guanidinas/síntese química , Guanidinas/química , Humanos , Neuralgia/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...