Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 12(3): e1004818, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26990103

RESUMO

Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.


Assuntos
Imunidade Adaptativa/imunologia , Movimento Celular/imunologia , Linfonodos/imunologia , Modelos Imunológicos , Modelos Estatísticos , Linfócitos T/imunologia , Adaptação Psicológica/fisiologia , Animais , Simulação por Computador , Humanos , Imunidade Inata/imunologia , Linfonodos/patologia
2.
PLoS One ; 8(11): e78940, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250818

RESUMO

Cell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility. In this study, we find a previously unknown role for PKCθ in regulating T cell migration to lymph nodes. PKCθ localizes to the migrating T cell uropod and regulates localization of the MTOC, CD43 and ERM proteins to the uropod. Furthermore, PKCθ-deficient T cells are less responsive to chemokine induced migration and are defective in migration to lymph nodes. Our results reveal a novel role for PKCθ in regulating T cell migration and demonstrate that PKCθ signals downstream of CCR7 to regulate protein localization and uropod formation.


Assuntos
Movimento Celular/genética , Imunidade Celular/genética , Isoenzimas/genética , Proteína Quinase C/genética , Receptores CCR7/metabolismo , Linfócitos T/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Isoenzimas/metabolismo , Leucossialina/metabolismo , Linfonodos/metabolismo , Linfonodos/patologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...