Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174279, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942303

RESUMO

Standardisation and validation of methods for microplastics research is essential. A major methodological challenge is the removal of planktonic organisms from marine water samples allowing for the identification of microplastics associated to planktonic communities. To improve the reproducibility and accuracy of digestion methods for the removal of planktonic biomass, we compared and modified existing chemical digestion methods. These digestion methods included an acidic digestion using nitric acid, alkaline digestions with potassium hydroxide (alkaline 1 digestion) and sodium hydroxide from drain cleaner (alkaline 2 digestion), an oxidative digestion using sodium dodecyl sulfate with hydrogen peroxide, and an enzymatic digestion using enzyme drain clean pellets. Chemical digestion of three densities of zooplankton communities (high, medium, and low) in the presence of five commonly found environmental microplastic pollutants (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polystyrene) were performed for each treatment. The chemical treatments were assessed for (i) their digestion efficiency of zooplankton communities by different biomass densities, and (ii) their impact on microplastic particles through the comparison of both chemical (Raman spectroscopy) and physical (length, width, and visual) changes, between the pre-treatment and post-treatment microplastic particles. The alkaline 1, alkaline 2 and oxidative methods demonstrated significantly better digestion efficiency (p < 0.05) than the modified enzymatic and acidic treatments. The acidic, alkaline 1, and alkaline 2, treatments caused the most damages to the microplastic particles. We suggest future studies to implement the oxidative digestion method with sodium dodecyl sulfate and hydrogen peroxide because of its high digestion efficiency, and low damage to microplastic particles. This method is similar to the wet peroxide oxidation digestion method used throughout the literature but can be implemented at a lower cost.

2.
Heliyon ; 10(11): e32334, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933949

RESUMO

Legionella is the causative agent of Legionnaires' disease, and its prevalence in potable water is a significant public health issue. Water stagnation within buildings increases the risk of Legionella. However, there are limited studies investigating how stagnation arising through intermittent usage affects Legionella proliferation and the studies that are available do not consider viable but non culturable (VBNC) Legionella. This study used a model plumbing system to examine how intermittent water stagnation affects both VBNC and culturable Legionella. The model plumbing system contained a water tank supplying two biofilm reactors. The model was initially left stagnant for ≈5 months (147 days), after which one reactor was flushed daily, and the other weekly. Biofilm coupons, and water samples were collected for analysis at days 0, 14 and 28. These samples were analysed for culturable and VBNC Legionella, free-living amoebae, and heterotrophic bacteria. After 28 days, once-a-day flushing significantly (p < 0.001) reduced the amount of biofilm-associated culturable Legionella (1.5 log10 reduction) compared with weekly flushing. However, higher counts of biofilm-associated VBNC Legionella (1 log10 higher) were recovered from the reactor with once-a-day flushing compared with weekly flushing. Likewise, once-a-day flushing increased the population of biofilm-associated Vermamoeba vermiformis (approximately 3 log10 higher) compared with weekly flushing, which indicated a positive relationship between VBNC Legionella and V. vermiformis. This is the first study to investigate the influence of stagnation on VBNC Legionella under environmental conditions. Overall, this study showed that a reduction in water stagnation decreased culturable Legionella but not VBNC Legionella.

3.
Mar Pollut Bull ; 194(Pt B): 115334, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541141

RESUMO

Plastic pollution is fast becoming one of the most prominent contamination issues facing the marine environment. Microplastics are a major subset of plastic waste now present in all global oceans, with their numbers standing only to increase. This study applies a coupled hydrodynamic model and Lagrangian particle-tracking model to predict and simulate microplastic transport in South Australian waters. Virtual particles representing microplastics were released daily for 365 days from two major freshwater input sources along the coastline of Adelaide, Australia. These particles entered the Gulf St Vincent and were tracked over two model years using LTRANS software. The model identified general gulf circulation as circular, clockwise, with net southward particle transport from particle release sites. A potential accumulation zone associated with a local eddy was identified. Concentrations of particles that passed through local marine parks were also calculated in response to the potential concerns they pose in vulnerable protected areas.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Rios , Austrália do Sul , Austrália , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Doce
4.
Water Res ; 243: 120363, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494744

RESUMO

In recent years, the frequency of nosocomial infections has increased. Hospital water systems support the growth of microbes, especially opportunistic premise plumbing pathogens. In this study, planktonic prokaryotic communities present in water samples taken from hospital showers and hand basins, collected over three different sampling phases, were characterized by 16S rRNA gene amplicon sequencing. Significant differences in the abundance of various prokaryotic taxa were found through univariate and multivariate analysis. Overall, the prokaryotic communities of hospital water were taxonomically diverse and dominated by biofilm forming, corrosion causing, and potentially pathogenic bacteria. The phyla Proteobacteria, Actinobacteriota, Bacteroidota, Planctomycetota, Firmicutes, and Cyanobacteria made up 96% of the relative abundance. The α-diversity measurements of prokaryotic communities showed no difference in taxa evenness and richness based on sampling sites (shower or hand basins), sampling phases (months), and presence or absence of Vermamoeba vermiformis. However, ß-diversity measurements showed significant clustering of prokaryotic communities based on sampling phases, with the greatest difference observed between the samples collected in phase 1 vs phase 2/3. Importantly, significant difference was observed in prokaryotic communities based on flow dynamics of the incoming water. The Pielou's evenness diversity index revealed a significant difference (Kruskal Wallis, p < 0.05) and showed higher species richness in low flow regime (< 13 minutes water flushing per week and ≤ 765 flushing events per six months). Similarly, Bray-Curtis dissimilarity index found significant differences (PERMANOVA, p < 0.05) in the prokaryotic communities of low vs medium/high flow regimes. Furthermore, linear discriminant analysis effect size showed that several biofilm forming (e.g., Pseudomonadales), corrosion causing (e.g., Desulfobacterales), extremely environmental stress resistant (e.g., Deinococcales), and potentially pathogenic (e.g., Pseudomonas) bacterial taxa were in higher amounts under low flow regime conditions. This study demonstrated that a hospital building water system consists of a complex microbiome that is shaped by incoming water quality and the building flow dynamics arising through usage.


Assuntos
Cianobactérias , Plâncton , RNA Ribossômico 16S/genética , Proteobactérias/genética , Cianobactérias/genética , Hospitais
5.
Sci Total Environ ; 856(Pt 1): 158672, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36419277

RESUMO

The pollution of marine environments from plastic waste is anticipated to increase with current increases in plastic production. Reciprocally, escalating research efforts provide an improved understanding, monitoring, awareness, and mitigation of plastic contamination. Freshwater streams are recognised as one of the main contributors of microplastic pollution in marine environments. Presented here is the first investigation on the abundance of microplastic contamination (>20 µm and <5 mm) in freshwater streams in Adelaide, Australia. Composite samples were obtained from the sub-surface waters of eight freshwater streams (Magazine Wetland, Torrens River, Brownhill Creek, Sturt River, Field River, Christie Creek, Onkaparinga River and Pedler Creek), just before their connection to the Gulf St Vincent. Microplastics were found in all samples and microplastic abundance was 6.4 ± 5.5 particles.L-1 across all streams, with significant variations. Microplastic abundances found in the freshwater streams of Adelaide were comparatively higher than those found in areas of similar urbanisation, likely due to the varying methodologies used across studies. This work provides evidence, for the first time, of the prevalence of microplastic contamination in the sub-surface waters of eight freshwater streams in metropolitan Adelaide. These findings reinforce the need for long-term and on-going monitoring of freshwater streams for plastic contamination. Furthermore, spatial and temporal monitoring will allow for the identification in changes to the abundances of microplastics discharging from these sources into the Gulf St Vincent and observe if abundances increase or decrease with any future targeted waste management efforts.


Assuntos
Plásticos , Poluentes Químicos da Água , Microplásticos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Doce , Austrália
6.
Microorganisms ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35456734

RESUMO

This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.

7.
Mar Pollut Bull ; 172: 112842, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34392159

RESUMO

Microplastics are a major source of marine pollution and comprise of many recyclable polymers. For this study, we investigated the prevalence of microplastic polymers in an urban and non-urban setting and determined what type of plastic polymers was most common in these areas. This was conducted by extracting sediment and sand samples from 2 rivers and beaches in Adelaide, South Australia. The microplastics were extracted using density separation and were identified using Fourier-transform infrared spectroscopy. We found a significantly higher abundance of microplastics and variety of polymers in the sediment of the Patawalonga creek, compared to the less urbanised environment. Most of the microplastics found in the study were from recyclable products which highlight the lack of recycling practices undertaken by the inhabitants of that area.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Polímeros , Rios , Austrália do Sul , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 55(1): 757-766, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337864

RESUMO

Unwanted growth of fouling organisms on underwater surfaces is an omnipresent challenge for the marine industry, costing billions of dollars every year in the transportation sector alone. Copper, the most widely used biocide in antifouling paints, is at the brink of a total ban in being used in antifouling coatings, as it has become an existential threat to nontargeted species due to anthropogenic copper inputs into protected waters. In the current study, using a porous and cross-linked poly(ethylene imine) structure under marine and fouling environments, available copper from natural seawater was absorbed and electrochemically released back as a potent biocide at 1.3 V vs Ag|AgCl, reducing marine growth by 94% compared to the control electrode (coupon) at 0 V. The coating can also function as an electrochemical copper sensor enabling real-time monitoring of the electrochemical uptake and release of copper ions from natural seawater. This allows tailoring of the electrochemical program to the changing marine environments, i.e., when the vessels move from high-copper-contaminated waters to coastal regions with low concentrations of copper.


Assuntos
Incrustação Biológica , Desinfetantes , Incrustação Biológica/prevenção & controle , Cobre/análise , Pintura , Água do Mar
9.
Bioresour Technol ; 273: 431-438, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30466021

RESUMO

Direct biodiesel production from wet fungal biomass may significantly reduce production costs, but there is a lack of fast and cost-effective processing technology. A novel thin film continuous flow process has been applied to study the effects of its operational parameters on fatty acid (FA) extraction and FA to fatty acid methyl ester (FAME) conversion efficiencies. Single factor experiments evaluated the effects of catalyst concentration and water content of biomass, while factorial experimental designs determined the interactions between catalyst concentration and biomass to methanol ratio, flow rate, and rotational speed. Direct transesterification (DT) of wet Mucor plumbeus biomass at ambient temperature and pressure achieved a FA to FAME conversion efficiency of >90% using 3 wt/v % NaOH concentration, if the water content was ≤50% (w/w). In comparison to existing DT methods, this continuous flow processing technology has an estimated 90-94% reduction in energy consumption, showing promise for up-scaling.


Assuntos
Biomassa , Biocombustíveis , Catálise , Esterificação , Ácidos Graxos/química , Metanol/metabolismo
10.
Chem Commun (Camb) ; 54(85): 12085-12088, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30298163

RESUMO

A novel continuous flow turbo-thin film device (T2FD) has been developed. The microfluidic platform is effective in high yielding production of biodiesel from wet microalgae at room temperature under continuous flow conditions. These findings open the possibility of cost effective production of biodiesel directly from wet microalgae.

11.
Bioresour Technol ; 266: 488-497, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29990765

RESUMO

A bottleneck in the production of biodiesel from microalgae is the dewatering and lipid extraction process which is the dominant energy penalty and cost. A novel biodiesel production platform based on vortex fluidic device (VFD)-assisted direct transesterification (DT) of wet microalgal biomass of Chloroparva pannonica was developed and evaluated. Fatty acid extraction and fatty acid to FAME conversion efficiencies were used at different parameter settings to evaluate performance of the processing technology in confined and continuous mode. A response surface method based on Box-Behnken experimental design was used to determine the effects of water content, the ratio of biomass to methanol and residence time in the VFD. Average extraction efficiencies were 41% and conversion efficiencies >90% with the processing technology showing a broad tolerance to parameter settings. The findings suggest that VFD-assisted DT is a simple and effective way to produce biodiesel directly from wet microalgae biomass at room temperature.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Esterificação , Lipídeos , Metanol
12.
Sci Data ; 5: 180018, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461516

RESUMO

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Assuntos
Clorofila , Austrália , Bases de Dados Factuais , Ecossistema , Fitoplâncton , Água do Mar
14.
Sci Rep ; 7: 44441, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327643

RESUMO

Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong.


Assuntos
Cadeia Alimentar , Água Doce/análise , Fitoplâncton/fisiologia , Água do Mar/análise , Zooplâncton/fisiologia , Animais , Austrália , Biomassa , Ecossistema , Monitoramento Ambiental , Água Doce/química , Processos Heterotróficos , Humanos , Hidrodinâmica , Nitrogênio/química , Oxigênio/química , Salinidade , Água do Mar/química , Qualidade da Água/normas
16.
Sci Data ; 3: 160043, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328409

RESUMO

There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.


Assuntos
Bases de Dados Factuais , Fitoplâncton , Austrália , Biomassa , Mudança Climática , Ecossistema , Eutrofização
17.
Anal Bioanal Chem ; 407(1): 95-116, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381608

RESUMO

Blooms of microscopic algae in our waterways are becoming an increasingly important environmental concern. Many are sources of harmful biotoxins that can lead to death in humans, marine life and birds. Additionally, their biomass can cause damage to ecosystems such as oxygen depletion, displacement of species and habitat alteration. Globally, the number and frequency of harmful algal blooms has increased over the last few decades, and monitoring and detection strategies have become essential for managing these events. This review discusses developments in the use of oligonucleotide-based 'molecular probes' for the selective monitoring of algal cell numbers. Specifically, hybridisation techniques will be a focus.


Assuntos
Bioensaio/métodos , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Oligonucleotídeos/genética , Dinoflagellida/crescimento & desenvolvimento , Hibridização in Situ Fluorescente
18.
Anal Bioanal Chem ; 405(10): 3359-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23371532

RESUMO

Diatoms are key indicators of marine environmental health. To further understand how diatoms respond to varying degrees of salinity, either due to climate change or brine waste discharge into marine environments, two different diatom species were studied. Thalassiosira pseudonana and Chaetoceros muelleri were cultured at three different salinities namely, 26 practical salinity units (PSU or parts per thousand), 36 PSU (standard salinity for culturing of seawater species) and 46 PSU. Changes in silica and organic content within the cultured diatoms were analysed using solid-state (29)Si{(1)H} cross-polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopies coupled with analysis of variance. (29)Si CP-MAS NMR showed that qualitatively the Q4:Q3 area ratios of C. muelleri, grown away from standard salinities, increased in response to the formation of more condensed (2 ≡SiOH → ≡Si-O-Si≡ + H2O) and/or an increase in closely associated organic matter to the Q4 component of the diatoms. This was not observed for T. pseudonana. However, both species showed the appearance of a new peak centered at 1575-1580 cm(-1) in the ATR-FTIR spectra, designated as the C═N band of nitrogenous purine-type compounds. Further, the C. muelleri species was shown to produce more extracellular polymeric substances at non-standard salinities. On this basis, results suggest that there is a strong relationship between diatom composition and salinity and that C. muelleri is more sensitive to its environment than T. pseudonana.


Assuntos
Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Ressonância Magnética/instrumentação , Salinidade , Água do Mar/análise , Cloreto de Sódio/análise
19.
Saline Syst ; 6: 5, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20433731

RESUMO

The distribution and aminopeptidase activity of prokaryotes were investigated along a natural continuous salinity gradient in a hypersaline coastal lagoon, the Coorong, South Australia. The abundance of prokaryotes significantly increased from brackish to hypersaline waters and different sub-populations, defined by flow cytometry, were observed along the salinity gradient. While four sub-populations were found at each station, three additional ones were observed for 8.3% and 13.4%, suggesting a potential modification in the composition of the prokaryotic communities and/or a variation of their activity level along the salinity gradient. The aminopeptidase activity highly increased along the gradient and salinity appeared as the main factor favouring this enzymatic activity. However, while the aminopeptidase activity was dominated by free enzymes for salinities ranging from 2.6% to 13.4%, cell-attached aminopeptidase activity was predominant in more saline waters (i.e. 15.4%). Changes in substrate structure and availability, strongly related to salinity, might (i) modify patterns of both aminopeptidase activities (free and cell-associated enzymes) and (ii) obligate the prokaryotic communities to modulate rapidly their aminopeptidase activity according to the nutritive conditions available along the gradient.

20.
Saline Syst ; 6: 2, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20178652

RESUMO

BACKGROUND: Picophytoplankton (i.e. cyanobacteria and pico-eukaryotes) are abundant and ecologically critical components of the autotrophic communities in the pelagic realm. These micro-organisms colonized a variety of extreme environments including high salinity waters. However, the distribution of these organisms along strong salinity gradient has barely been investigated. The abundance and community structure of cyanobacteria and pico-eukaryotes were investigated along a natural continuous salinity gradient (1.8% to 15.5%) using flow cytometry. RESULTS: Highest picophytoplankton abundances were recorded under salinity conditions ranging between 8.0% and 11.0% (1.3 x 106 to 1.4 x 106 cells ml-1). Two populations of picocyanobacteria (likely Synechococcus and Prochlorococcus) and 5 distinct populations of pico-eukaryotes were identified along the salinity gradient. The picophytoplankton cytometric-richness decreased with salinity and the most cytometrically diversified community (4 to 7 populations) was observed in the brackish-marine part of the lagoon (i.e. salinity below 3.5%). One population of pico-eukaryote dominated the community throughout the salinity gradient and was responsible for the bloom observed between 8.0% and 11.0%. Finally only this halotolerant population and Prochlorococcus-like picocyanobacteria were identified in hypersaline waters (i.e. above 14.0%). Salinity was identified as the main factor structuring the distribution of picophytoplankton along the lagoon. However, nutritive conditions, viral lysis and microzooplankton grazing are also suggested as potentially important players in controlling the abundance and diversity of picophytoplankton along the lagoon. CONCLUSIONS: The complex patterns described here represent the first observation of picophytoplankton dynamics along a continuous gradient where salinity increases from 1.8% to 15.5%. This result provides new insight into the distribution of pico-autotrophic organisms along strong salinity gradients and allows for a better understanding of the overall pelagic functioning in saline systems which is critical for the management of these precious and climatically-stress ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...