Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 372(1-2): 119-26, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21782822

RESUMO

Multi-parametric flow cytometry analysis is a reliable method for phenotypic and functional characterization of tumor infiltrating immune cells (TIIC). The isolation of infiltrating leukocytes from solid tumors can be achieved through various methods which can be both enzymatic and mechanical; however, these methods may alter cell biology. The aim of this study was to compare the effects of three tissue disaggregation techniques on TIIC biology in breast, kidney and lung tumor specimens. We therefore compared two enzymatic treatments using either collagenase type IA alone or in combination with collagenase type IV and DNase I type II, and one mechanical system (Medimachine™). We evaluated the impact of treatments on cell viability, surface marker integrity and proliferative capacity. We show that cell viability was not significantly altered by treatments. However, enzymatic treatments decreased cell proliferation; specifically collagenases and DNase provoked a significant decrease in detection of surface markers such as CD4, CD8, CD45RA and CD14, indicating that results of phenotypic studies employing these techniques could be affected. In conclusion, mechanical tissue disaggregation by Medimachine™ appears to be optimal to maintain phenotypic and functional TIIC features.


Assuntos
Neoplasias da Mama/imunologia , Separação Celular/métodos , Neoplasias Renais/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proliferação de Células , Feminino , Citometria de Fluxo/métodos , Humanos , Linfócitos do Interstício Tumoral/citologia
2.
J Vis Exp ; (51)2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21633326

RESUMO

To cause infections, bacteria must colonize their host. Bacterial pathogens express various molecules or structures able to promote attachment to host cells(1). These adhesins rely on interactions with host cell surface receptors or soluble proteins acting as a bridge between bacteria and host. Adhesion is a critical first step prior to invasion and/or secretion of toxins, thus it is a key event to be studied in bacterial pathogenesis. Furthermore, adhered bacteria often induce exquisitely fine-tuned cellular responses, the studies of which have given birth to the field of 'cellular microbiology'(2). Robust assays for bacterial adhesion on host cells and their invasion therefore play key roles in bacterial pathogenesis studies and have long been used in many pioneer laboratories(3,4). These assays are now practiced by most laboratories working on bacterial pathogenesis. Here, we describe a standard adherence assay illustrating the contribution of a specific adhesin. We use the Escherichia coli strain 2787(5), a human pathogenic strain expressing the autotransporter Adhesin Involved in Diffuse Adherence (AIDA). As a control, we use a mutant strain lacking the aidA gene, 2787ΔaidA (F. Berthiaume and M. Mourez, unpublished), and a commercial laboratory strain of E. coli, C600 (New England Biolabs). The bacteria are left to adhere to the cells from the commonly used HEp-2 human epithelial cell line. This assay has been less extensively described before(6).


Assuntos
Aderência Bacteriana/fisiologia , Técnicas Bacteriológicas/métodos , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...