Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1432(1): 40-8, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10366726

RESUMO

Yeast iso-1-cytochrome c is one of the least stable mitochondrial cytochromes c. We have used a coordinated approach, combining the known functional and structural properties of cytochromes c, to engineer mutations into yeast iso-1-cytochrome c with the goal of selectively increasing the stability of the protein. The two redox forms of the native protein and six different mutant forms of yeast iso-1-cytochrome c were analyzed by differential scanning calorimetry (DSC). The relative stability, expressed as the difference in the Gibb's free energy of denaturation at a given temperature between the native and mutant forms (DeltaDeltaG(Tref)), was determined for each of the proteins. In both oxidation states, the mutant proteins C102T, T69E/C102T, T96A/C102T, and T69E/T96A/C102T were more stable than the wild-type protein, respectively. The increased stability of the mutant proteins is proposed to be due to the removal of a rare surface cysteine and the stabilization of two distorted alpha-helices.


Assuntos
Grupo dos Citocromos c/genética , Citocromos c , Proteínas de Saccharomyces cerevisiae , Grupo dos Citocromos c/biossíntese , Estabilidade Enzimática/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Dobramento de Proteína , Termodinâmica , Leveduras
2.
J Biol Chem ; 271(46): 29088-93, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8910563

RESUMO

Eukaryotic cytochromes c contain a buried water molecule (Wat166) next to the heme that is associated through a network of hydrogen bonds to three invariant residues: tyrosine 67, asparagine 52, and threonine 78. Single-site mutations to two of these residues (Y67F, N52I, N52A) and the double-site mutation (Y67F/N52I) were introduced into Saccharomyces cerevisiae iso-1-cytochrome c to disrupt the hydrogen bonding network associated with Wat166. The N52I and Y67F/N52I mutations lead to a loss of Wat166 while N52A and Y67F modifications lead to the addition of a new water molecule (Wat166) at an adjacent site (Berghuis, A. M., Guillemette, J. G., McLendon, G., Sherman, F., Smith, M., and Brayer, G. D. (1994) J. Mol. Biol. 236, 786-799; Berghuis, A. M., Guillemette, J. G., Smith, M., and Brayer, G. D. (1994) J. Mol. Biol. 235, 1326-1341; Rafferty, S. P., Guillemette, J. G., Berghuis, A. M., Smith, M., Brayer, G. D., and Mauk, A. G. (1996) Biochemistry, 35, 10784-10792). We used differential scanning calorimetry (DSC) to determine the change in heat capacity (DeltaCp) and the temperature dependent enthalpy (DeltaHvH) for the thermal denaturation of both the oxidized and reduced forms of the iso-1 cytochrome c variants. The relative stabilities were expressed as the difference in the free energy of denaturation (DeltaGD) between the wild type and mutant proteins in both redox states. The disruption of the hydrogen bonding network results in increased stability for all of the mutant proteins in both redox states with the exception of the reduced Y67F variant which has approximately the same stability as the reduced wild type protein. For the oxidized proteins, DeltaGD values of 1.3, 4.1, 1.5, and 5.8 kcal/mol were determined for N52A, N52I, Y67F, and Y67F/N52I, respectively. The oxidized proteins were 8.2-11.5 kcal/mol less stable than the reduced proteins due to a redox-dependent increase in the entropy of unfolding.


Assuntos
Grupo dos Citocromos c/metabolismo , Citocromos c , Proteínas de Saccharomyces cerevisiae , Água/química , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Estabilidade Enzimática , Temperatura Alta , Mutagênese Sítio-Dirigida , Oxirredução , Desnaturação Proteica , Saccharomyces cerevisiae/enzimologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...