Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(21)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364261

RESUMO

Off-stoichiometric Cu-Cr-O delafossite thin films with different thicknesses were grown by metal organic chemical vapor deposition on substrates with different coefficients of thermal expansion. Seebeck thermoelectric coefficient and resistivity measurements were performed on the range of 300-850 K. A qualitative change in the temperature-dependence of the resistivity is observed at the temperature corresponding to the deposition process, where the transition from tensile to compressive strain takes place. Arrhenius plots reveal different slopes in these two thermal ranges. The fact that the shift is more pronounced for the thinner films might indicate the induced strain plays a role in changing electrical behaviour. Furthermore, changes below 0.1% in electrical mobility were measured when the strain is induced by mechanical bending.

2.
ACS Appl Mater Interfaces ; 12(32): 36329-36338, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32666787

RESUMO

Conductive ultra-thin silver films are commonly fabricated by physical vapor deposition methods such as evaporation or sputtering. The line-of-sight geometry of these techniques impedes the conformal growth on substrates with complex morphology. In order to overcome this issue, volume deposition technologies such as chemical vapor deposition or atomic layer deposition are usually preferred. However, the silver films fabricated using these methods are generally non-electrically conductive for thicknesses below 20-50 nm due to island formation. Here, we demonstrate a novel approach for producing ultra-thin conductive silver layers on complex substrates. Relying on chemical vapor-phase deposition and plasma post-treatment, this two-step technique allows the synthesis of highly conductive and uniform silver films with a critical thickness lower than 15 nm and a sheet resistance of 1.6 Ω/□ for a 40 nm-thin film, corresponding to a resistivity of 6.4 µΩ·cm. The high infrared reflectance further demonstrates the optical quality of the films, despite a still large root-mean-square roughness of 8.9 nm. We successfully demonstrate the highly conformal deposition in lateral structures with an aspect ratio of up to 100. This two-step deposition method could be extended to other metals and open new opportunities for depositing electrically conductive films in complex 3D structures.

4.
Nano Lett ; 19(5): 2879-2887, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31014066

RESUMO

The development of next generation medicines demands more sensitive and reliable label-free sensing able to cope with increasing needs of multiplexing and shorter times to results. Field effect transistor-based biosensors emerge as one of the main possible technologies to cover the existing gap. The general trend for the sensors has been miniaturization with the expectation of improving sensitivity and response time but presenting issues with reproducibility and noise level. Here we propose a Fin-Field Effect Transistor (FinFET) with a high height to width aspect ratio for electrochemical biosensing solving the issue of nanosensors in terms of reproducibility and noise, while keeping the fast response time. We fabricated different devices and characterized their performance with their response to the pH changes that fitted to a Nernst-Poisson model. The experimental data were compared with simulations of devices with different aspect ratio, establishing an advantage in linearity and lower device resistance to provide higher current signals for the FinFETs with higher aspect ratio. In addition, these FinFETs promise the optimization of reliability and efficiency in terms of limits of detection for which the interplay of the size and geometry of the sensor with the diffusion of the analytes plays a pivotal role.


Assuntos
Técnicas Biossensoriais/métodos , Íons/isolamento & purificação , Transistores Eletrônicos , Técnicas Biossensoriais/instrumentação , Concentração de Íons de Hidrogênio , Íons/química , Nanofios/química , Silício/química
5.
Micromachines (Basel) ; 8(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30400503

RESUMO

We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO) transparent electrodes with an interdigitated electrode (IDE) design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range). Fully crystallized Pb(Zr0.52Ti0.48)O3 (PZT) films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 µC/cm². The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures.

6.
Nano Lett ; 16(2): 825-33, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26733426

RESUMO

Ultra narrow bandgap III-V semiconductor nanomaterials provide a unique platform for realizing advanced nanoelectronics, thermoelectrics, infrared photodetection, and quantum transport physics. In this work we employ molecular beam epitaxy to synthesize novel nanosheet-like InSb nanostructures exhibiting superior electronic performance. Through careful morphological and crystallographic characterization we show how this unique geometry is the result of a single twinning event in an otherwise pure zinc blende structure. Four-terminal electrical measurements performed in both the Hall and van der Pauw configurations reveal a room temperature electron mobility greater than 12,000 cm(2)·V(-1)·s(-1). Quantized conductance in a quantum point contact processed with a split-gate configuration is also demonstrated. We thus introduce InSb "nanosails" as a versatile and convenient platform for realizing new device and physics experiments with a strong interplay between electronic and spin degrees of freedom.

7.
Nanoscale ; 6(22): 13446-50, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25297836

RESUMO

We report the controlled formation of nanoscale constrictions in junctionless nanowire field-effect transistors that efficiently modulate the flow of the current in the nanowire. The constrictions act as potential barriers and the height of the barriers can be selectively tuned by gates, making the device concept compatible with the crossbar geometry in order to create logic circuits. The functionality of the architecture and the reliability of the fabrication process are demonstrated by designing decoder devices.

8.
Phys Rev Lett ; 112(7): 076801, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579622

RESUMO

We report on magnetotransport measurements in InAs nanowires under a large magnetic field (up to 55 T), providing a spectroscopy of the one-dimensional electronic band structure. Large modulations of the conductance mediated by a control of the Fermi energy reveal the Landau fragmentation, carrying the fingerprints of the confined InAs material. Our numerical simulations of the magnetic band structure consistently support the experimental results and reveal key parameters of the electronic confinement.

9.
Nanotechnology ; 24(27): 275706, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23764855

RESUMO

We report a significant and persistent enhancement of the conductivity in free-standing non-intentionally doped InAs nanowires upon irradiation in ultra-high vacuum. Combining four-point probe transport measurements performed on nanowires with different surface chemistries, field effect based measurements and numerical simulations of the electron density, the change in the conductivity is found to be caused by an increase in the surface free carrier concentration. Although an electron beam of a few keV, typically used for the inspection and the processing of materials, propagates through the entire nanowire cross-section, we demonstrate that the electrical properties of the nanowire are predominantly affected by radiation-induced defects occurring at the nanowire surface and not in the bulk.

10.
Phys Rev Lett ; 104(8): 080602, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366923

RESUMO

We experimentally demonstrate the validity of nonequilibrium fluctuation relations by using a quantum coherent conductor. In equilibrium the fluctuation-dissipation relation leads to the correlation between current and current noise at the conductor, namely, the Johnson-Nyquist relation. When the conductor is voltage biased so that the nonlinear regime is entered, the fluctuation theorem has predicted similar nonequilibrium fluctuation relations, which hold true even when the Onsager-Casmir relations are broken in magnetic fields. Our experiments qualitatively validate the predictions as the first evidence of this theorem in the nonequilibrium quantum regime.

11.
Nano Lett ; 8(2): 382-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18197718

RESUMO

A highly sensitive charge detector is realized for a quantum dot in an InAs nanowire. We have developed a self-aligned etching process to fabricate in a single step a quantum point contact in a two-dimensional electron gas and a quantum dot in an InAs nanowire. The quantum dot is strongly coupled to the underlying point contact that is used as a charge detector. The addition of one electron to the quantum dot leads to a change of the conductance of the charge detector by typically 20%. The charge sensitivity of the detector is used to measure Coulomb diamonds as well as charging events outside the dot. Charge stability diagrams measured by transport through the quantum dot and charge detection merge perfectly.


Assuntos
Arsenicais/química , Eletroquímica/instrumentação , Índio/química , Iluminação/instrumentação , Nanotecnologia/instrumentação , Nanotubos/química , Pontos Quânticos , Eletricidade Estática , Instalação Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/métodos , Conformação Molecular , Nanotecnologia/métodos , Nanotubos/ultraestrutura
12.
Phys Rev Lett ; 99(17): 176803, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995358

RESUMO

We have measured highly visible Aharonov-Bohm (AB) oscillations in a ring structure defined by local anodic oxidation on a p-type GaAs heterostructure with strong spin-orbit interactions. Clear beating patterns observed in the raw data can be interpreted in terms of a spin geometric phase. Besides h/e oscillations, we resolve the contributions from the second harmonic of AB oscillations and also find a beating in these h/2e oscillations. A resistance minimum at B=0 T, present in all gate configurations, is the signature of destructive interference of the spins propagating along time-reversed paths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...