Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(17): 13049-13060, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598198

RESUMO

Iron is an abundant and non-toxic element that holds great potential as energy carrier for large-scale and long-term energy storage. While from a general viewpoint iron oxidation is well-known, the detailed kinetics of oxidation for micrometer sized particles are missing, but required to enable large-scale utilization for energy production. In this work, iron particles are subjected to temperature-programmed oxidation. By dilution with boron nitride a sintering of the particles is prevented enabling to follow single particle effects. The mass fractions of iron and its oxides are determined for different oxidation times using Mössbauer spectroscopy. On the basis of the extracted phase compositions obtained at different times and temperatures (600-700 °C), it can be concluded that also for particles the oxidation follows a parabolic rate law. The parabolic rate constants are determined in this transition region. Knowledge of the particle size distribution and its consideration in modeling the oxidation kinetics of iron powder has proven to be crucial.

2.
Angew Chem Int Ed Engl ; 60(11): 5898-5906, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33497000

RESUMO

A new strategy affords "non-nano" carbon materials as dehydrogenation catalysts that perform similarly to nanocarbons. Polymer-based carbon precursors that combine a soft-template approach with ion adsorption and catalytic graphitization are key to this synthesis strategy, thus offering control over macroscopic shape, texture, and crystallinity and resulting in a hybrid amorphous/graphitic carbon after pyrolysis. From this intermediate the active carbon catalyst is prepared by removing the amorphous parts of the hybrid carbon materials via selective oxidation. The oxidative dehydrogenation of ethanol was chosen as test reaction, which shows that fine-tuning the synthesis of the new carbon catalysts allows to obtain a catalytic material with an attractive high selectivity (82 %) similar to a carbon nanotube reference, while achieving 10 times higher space-time yields at 330 °C. This new class of carbon materials is accessible via a technically scalable, reproducible synthetic pathway and exhibits spherical particles with diameters around 100 µm, allowing unproblematic handling similar to classic non-nano catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...