Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 83(11): 2629-2639, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34115618

RESUMO

Organic esters of phosphoric acid and other organophosphorous compounds are enzymatically hydrolyzed during wastewater treatment by microbial phosphoesterases, especially by phosphomonoesterase (phosphatase). For physiological reasons, the enzyme is inhibited by its main inorganic reaction product, ortho-phosphate. It is known that oxyanions of transition metals, resembling the molecular topology of ortho-phosphate, e.g. vanadate and tungstate, are more potent inhibitors for microbial alkaline phosphatase than phosphate. To proof this effect for activated sludge, a multitude of samples from a communal wastewater treatment plant was exposed at pH values from 7.00 to 8.50 to tungstate, vanadate, and molybdate. Inhibition effects were determined by a sensitive fluorimetric microplate assay and characteristic parameters (IC50 and IC20 concentrations) were deduced from modelled dose-response functions. Mean inhibitor concentrations (in brackets: ranges) causing 50% inactivation (IC50) at pH 7.50 were 2.5 (1.3-4.1) µM tungstate, 2.9 (1.6-5.5) µM vanadate, and 41.4 (33.6-56.7) µM molybdate. Vanadate and tungstate concentrations between 0.6 and 0.7 µM provoked a 20% (IC20) inhibition. The inhibition efficiency of tungstate and molybdate decreased with increasing pH, whereas vanadate reacted pH independently. These results underline the necessity to consider enzyme inhibition assessing the limitations and potentials of biological wastewater treatment processes.


Assuntos
Monoéster Fosfórico Hidrolases , Esgotos , Cinética , Molibdênio , Fosfatos , Vanadatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...