Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 5: 4, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19393072

RESUMO

BACKGROUND: The concept of metabolite profiling has been around for decades and technical innovations are now enabling it to be carried out on a large scale with respect to the number of both metabolites measured and experiments carried out. However, studies are generally confined to polar compounds alone. Here we describe a simple method for lipophilic compounds analysis in various plant tissues. RESULTS: We choose the same preparative and instrumental platform for lipophilic profiling as that we routinely use for polar metabolites measurements. The method was validated in terms of linearity, carryover, reproducibility and recovery rates, as well as using various plant tissues.As a first case study we present metabolic profiling of Arabidopsis root and shoot tissue of wild type (C24) and mutant (rsr4-1) plants deficient on vitamin B6. We found significant alterations in lipid constituent contents, especially in the roots, which were characterised by dramatic increases in several fatty acids, thus providing further hint for the role of pyridoxine in oxidative stress and lipid peroxidation.The second example is the lipophilic profiling of red and green tomato fruit cuticles of wild type (Alisa Craig) and the DFD (delayed fruit deterioration) mutant, which we compared and contrasted with the more focused wax analysis of these plants reported before. CONCLUSION: We can rapidly and reliably detect and quantify over 40 lipophilic metabolites including fatty acids, fatty alcohols, alkanes, sterols and tocopherols. The method presented here affords a simple and rapid, yet robust complement to previously validated methods of polar metabolite profiling by gas-chromatography mass-spectrometry.

2.
FEBS J ; 275(5): 960-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18298794

RESUMO

Vitamin B6 is one of the most important compounds in living organisms, and its biosynthesis has only recently been understood. Because it is required for more than 100 biochemical reactions, lack of the vitamin is fatal. This is of special importance to mammals and humans, which cannot biosynthesize the vitamin and thus depend on its external uptake. Here we describe the cloning of a vitamin B6 biosynthetic gene GbPDX1 from Ginkgo biloba. The gene is expressed in seeds, leaf and trunk tissue. Using yeast 2-hybrid and pull-down assays, we show that the protein can interact with itself and with members of Arabidopsis thaliana AtPDX1 and AtPDX2 families. Furthermore, we prove the function of GbPDX1 in vitamin B6 biosynthesis by complementation of an Arabidopsis AtPDX1.3 mutant rsr4-1, at the phenotypical level and increasing vitamin B6 levels caused by ectopic GbPDX1 expression in the mutant background. Overall, this study provides a first description of Ginkgo vitamin B6 metabolism, and demonstrates a high degree of conservation between Ginkgo and Arabidopsis.


Assuntos
Arabidopsis/enzimologia , Ginkgo biloba/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vitamina B 6/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Liases , Clonagem Molecular , Sequência Conservada , Teste de Complementação Genética , Ginkgo biloba/genética , Dados de Sequência Molecular , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , Filogenia , Proteínas de Plantas/genética , Vitamina B 6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...