Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(24): 6595-6598, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325848

RESUMO

Over the past two decades, integrated photonic sensors have been of major interest to the optical biosensor community due to their capability to detect low concentrations of molecules with label-free operation. Among these, interferometric sensors can be read-out with simple, fixed-wavelength laser sources and offer excellent detection limits but can suffer from sensitivity fading when not tuned to their quadrature point. Recently, coherently detected sensors were demonstrated as an attractive alternative to overcome this limitation. Here we show, for the first time, to the best of our knowledge, that this coherent scheme provides sub-nanogram per milliliter limits of detection in C-reactive protein immunoassays and that quasi-balanced optical arm lengths enable operation with inexpensive Fabry-Perot-type lasers sources at telecom wavelengths.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteína C-Reativa/análise , Imunoensaio/instrumentação , Interferometria/instrumentação , Silício/química , Óptica e Fotônica , Processos Fotoquímicos
2.
Sensors (Basel) ; 19(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450817

RESUMO

Waveguide-based photonic sensors provide a unique combination of high sensitivity, compact size and label-free, multiplexed operation. Interferometric configurations furthermore enable a simple, fixed-wavelength read-out making them particularly suitable for low-cost diagnostic and monitoring devices. Their limit of detection, i.e., the lowest analyte concentration that can be reliably observed, mainly depends on the sensors response to small refractive index changes, and the noise in the read-out system. While enhancements in the sensors response have been extensively studied, noise optimization has received much less attention. Here we show that order-of-magnitude enhancements in the limit of detection can be achieved through systematic noise reduction, and demonstrate a limit of detection of ∼ 10 - 8 RIU with a silicon nitride sensor operating at telecom wavelengths.


Assuntos
Técnicas Biossensoriais , Óptica e Fotônica/métodos , Compostos de Silício/isolamento & purificação , Interferometria , Limite de Detecção , Compostos de Silício/química
3.
Opt Express ; 27(9): 12616-12629, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052800

RESUMO

Photonic biosensors offer label-free detection of biomolecules for applications ranging from clinical diagnosis to food quality monitoring. Both sensors based on Mach-Zehnder interferometers and ring resonators are widely used, but are usually read-out using different schemes, making a direct comparison of their fundamental limit of detection challenging. A coherent detection scheme, adapted from optical communication systems, has been recently shown to achieve excellent detection limits, using a simple fixed-wavelength source. Here we present, for the first time, a theoretical model to determine the fundamental limit of detection of such a coherent read-out system, for both interferometric and resonant sensors. Based on this analysis, we provide guidelines for sensor optimization in the presence of optical losses and show that interferometric sensors are preferable over resonant structures when the sensor size is not limited by the available sample volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...