Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 33(Pt 1): 64-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15667266

RESUMO

A molecular characterization of uptake hydrogenase in Frankia was performed by using two-dimensional gel electrophoresis, matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, PCR amplification and Southern blotting. A polypeptide of approx. 60 kDa was recognized in Frankia UGL011102, AVCI1 and KB5 on the two-dimensional gel by blotting with Ralstonia eutropha (Hox G) antibody. Further analysis by MS resulted in a peptide 'fingerprint', which was similar to the membrane-bound hydrogenase 2 large subunit (HYD2) in Escherichia coli. In addition, a 127 bp PCR fragment could also be amplified from Frankia AVCI1, which gave a 76% similarity with the large subunit of hydrogenase in, e.g., Azotobacter chrococcum, Bradyrhizobium japonicum and Rhizobium leguminosarum. Although immunological similarity between the small subunit of Frankia hydrogenase and that of other organisms has not yet been found, a PCR product of 500 bp could be amplified from the local source of Frankia, the analysis of which gave 69 and 67% identity with the small subunit of hydrogenases in B. japonicum and R. leguminosarum respectively. A Southern-blot analysis further indicated evidence for the presence of the small hydrogenase subunit in other Frankia strains, i.e. KB5, AvcI1 and CcI3.


Assuntos
Frankia/enzimologia , Hidrogenase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Primers do DNA , Eletroforese em Gel Bidimensional , Hidrogenase/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
2.
J Plant Growth Regul ; 18(1): 9-14, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10467014

RESUMO

Oilseed rape (Brassica napus L.) seedlings treated with uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl)-l-penten-3-ol] were transplanted at the five-leaf stage into specially designed experimental containers and then exposed to waterlogging for 3 weeks. After waterlogging stress, uniconazole-treated seedlings had significantly higher activities of superoxide dismutase, catalase, and peroxidase enzymes and endogenous free proline content at both the seedling and flowering stages. Uniconazole plus waterlogging-treated plants had a significantly higher content of unsaturated fatty acids than the waterlogged plants. There was a parallel increase in the lipid peroxidation level and electrolyte leakage rate from the leaves of waterlogged plants. Leaves from uniconazole plus waterlogging-treated plants had a significantly lower lipid peroxidation level and electrolyte leakage rate compared with waterlogged plants at both the seedling and flowering stages. Pretreatment of seedlings with uniconazole could effectively delay stress-induced degradation of chlorophyll and reduction of root oxidizability. Uniconazole did not alter the soluble sugar content of leaves and stems, after waterlogging of seedlings. Uniconazole improved waterlogged plant performance and increased seed yield, possibly because of improved antioxidation defense mechanisms, and it retarded lipid peroxidation and membrane deterioration of plants.Key Words. Waterlogging-Uniconazole-Brassica napus L.-Enzymes-Lipid peroxidation-Membrane integrityhttp://link.springer-ny.com/link/service/journals/00344/bibs/18n1p9.html

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...