Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(21): 12089-12105, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850138

RESUMO

Antisense oligonucleotides are small pieces of modified DNA or RNA, which offer therapeutic potential for many diseases. We report on the synthesis of 7',5'-α-bc-DNA phosphoramidite building blocks, bearing the A, G, T and MeC nucleobases. Solid-phase synthesis was performed to construct five oligodeoxyribonucleotides containing modified thymidine residues, as well as five fully modified oligonucleotides. Incorporations of the modification inside natural duplexes resulted in strong destabilizing effects. However, fully modified strands formed very stable duplexes with parallel RNA complements. In its own series, 7',5'-α-bc-DNA formed duplexes with a surprising high thermal stability. CD spectroscopy and extensive molecular modeling indicated the adoption by the homo-duplex of a ladder-like structure, while hetero-duplexes with DNA or RNA still form helical structure. The biological properties of this new modification were investigated in animal models for Duchenne muscular dystrophy and spinal muscular atrophy, where exon splicing modulation can restore production of functional proteins. It was found that the 7',5'-α-bc-DNA scaffold confers a high biostability and a good exon splicing modulation activity in vitro and in vivo.


Assuntos
DNA/uso terapêutico , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos , Animais , Linhagem Celular , Masculino , Camundongos , Oligonucleotídeos/química , Oligonucleotídeos/uso terapêutico
2.
Bioorg Med Chem ; 28(11): 115487, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284226

RESUMO

The incorporation of nucleotides equipped with C-glycosidic aromatic nucleobases into DNA and RNA is an alluring strategy for a number of practical applications including fluorescent labelling of oligonucleotides, expansion of the genetic alphabet for the generation of aptamers and semi-synthetic organisms, or the modulation of excess electron transfer within DNA. However, the generation of C-nucleoside containing oligonucleotides relies mainly on solid-phase synthesis which is quite labor intensive and restricted to short sequences. Here, we explore the possibility of constructing biphenyl-modified DNA sequences using enzymatic synthesis. The presence of multiple biphenyl-units or biphenyl residues modified with electron donors and acceptors permits the incorporation of a single dBphMP nucleotide. Moreover, templates with multiple abasic sites enable the incorporation of up to two dBphMP nucleotides, while TdT-mediated tailing reactions produce single-stranded DNA oligonucleotides with four biphenyl residues appended at the 3'-end.


Assuntos
Compostos de Bifenilo/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Oligonucleotídeos/biossíntese , Compostos de Bifenilo/química , DNA/química , Humanos , Estrutura Molecular , Oligonucleotídeos/química
3.
Org Biomol Chem ; 17(35): 8083-8087, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31460550

RESUMO

A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.


Assuntos
Aptâmeros de Nucleotídeos/química , Arabinose/análogos & derivados , Uridina Trifosfato/química , Arabinose/química , Sítios de Ligação , Configuração de Carboidratos , DNA/química , DNA/genética
4.
Nucleic Acid Ther ; 29(5): 256-265, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184975

RESUMO

Huntington's disease is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of huntingtin gene (HTT) encoding for a toxic polyglutamine protein. This disease is characterized by motor, psychiatric, and cognitive impairments. Currently, there is no disease modifying treatment. However, reducing the expression of the huntingtin protein (HTT) using antisense oligonucleotides (ASOs) has been shown as a promising therapeutic strategy. In this study, we explore the therapeutic potential of ASO made of tricyclo-DNA (tcDNA), a conformationally constrained DNA analog, to silence HTT. We used a gapmer ASO, containing central DNA nucleotides flanked by tcDNA modifications on 5' and 3' ends, allowing the recruitment of RNAse H and subsequent degradation of the messenger RNA. After transfection of tcDNA-ASO in patient-derived fibroblast cell lines, we show a strong decrease of HTT mRNA and protein levels. As a control, 2'O-methyl-RNA targeting the same region of HTT was also tested and did not induce a significant effect. tcDNA-ASO were also evaluated in vivo in the YAC128 mice, containing the full-length human HTT gene with 128 CAG repeat expansion. Single intracerebroventricular (ICV) injections of tcDNA induce a significant decrease of HTT messenger and protein levels in the cortex, hippocampus, striatum, and cerebellum of treated mice. tcDNA-ASO were found well distributed in the central nervous system (CNS) and show long lasting effect with protein levels still low, 12 weeks after a single ICV injection. This proof of concept study suggests the therapeutic potential of gapmer tcDNA ASO to downregulate huntingtin in vitro and in vivo.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/terapia , Proteínas Mutantes/genética , Oligonucleotídeos Antissenso/farmacologia , Animais , DNA Antissenso/farmacologia , Modelos Animais de Doenças , Éxons/genética , Humanos , Proteína Huntingtina/antagonistas & inibidores , Doença de Huntington/genética , Doença de Huntington/imunologia , Doença de Huntington/patologia , Camundongos , Proteínas Mutantes/antagonistas & inibidores , Oligonucleotídeos Antissenso/genética , Ribonuclease H/genética , Expansão das Repetições de Trinucleotídeos/genética
5.
Methods Mol Biol ; 1973: 1-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016692

RESUMO

Chemical modification of nucleic acids can be achieved by the enzymatic polymerization of modified nucleoside triphosphates (dN*TPs). This approach obviates some of the requirements and drawbacks imposed by the more traditional solid-phase synthesis of oligonucleotides. Here, we describe the protocol that is necessary to synthesize dN*TPs and evaluate their substrate acceptance by polymerases for their subsequent use in various applications including selection experiments to identify aptamers. The protocol is exemplified for a sugar-constrained nucleoside analog, 7',5'-bc-TTP.


Assuntos
Compostos Bicíclicos com Pontes/química , DNA/biossíntese , Nucleotídeos/química , Açúcares/química , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Oligonucleotídeos/química , Técnicas de Síntese em Fase Sólida
6.
Nucleic Acids Res ; 47(9): 4872-4882, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916334

RESUMO

Tc-DNA is a conformationally constrained oligonucleotide analogue which shows significant increase in thermal stability when hybridized with RNA, DNA or tc-DNA. Remarkably, recent studies revealed that tc-DNA antisense oligonucleotides (AO) hold great promise for the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. To date, no high-resolution structural data is available for fully modified tc-DNA duplexes and little is known about the origins of their enhanced thermal stability. Here, we report the structures of a fully modified tc-DNA oligonucleotide paired with either complementary RNA, DNA or tc-DNA. All three investigated duplexes maintain a right-handed helical structure with Watson-Crick base pairing and overall geometry intermediate between A- and B-type, but closer to A-type structures. All sugars of the tc-DNA and RNA residues adopt a North conformation whereas the DNA deoxyribose are found in a South-East-North conformation equilibrium. The conformation of the tc-DNA strand in the three determined structures is nearly identical and despite the different nature and local geometry of the complementary strand, the overall structures of the examined duplexes are very similar suggesting that the tc-DNA strand dominates the duplex structure.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA/química , Pareamento de Bases , Dicroísmo Circular , DNA/genética , Desoxirribose , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Hibridização de Ácido Nucleico , Oligonucleotídeos/genética , RNA/genética , Termodinâmica
7.
Beilstein J Org Chem ; 15: 79-88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680042

RESUMO

Here we present the synthesis, the biophysical properties, and the RNase H profile of 6'-difluorinated [4.3.0]bicyclo-DNA (6'-diF-bc4,3-DNA). The difluorinated thymidine phosphoramidite building block was synthesized starting from an already known gem-difluorinated tricyclic glycal. This tricyclic siloxydifluorocyclopropane was converted into the [4.3.0]bicyclic nucleoside via cyclopropane ring-opening through the addition of an electrophilic iodine during the nucleosidation step followed by reduction. The gem-difluorinated bicyclic nucleoside was then converted into the corresponding phosphoramidite building block which was incorporated into oligonucleotides. Thermal denaturation experiments of these oligonucleotides hybridized to complementary DNA or RNA disclosed a significant destabilization of both duplex types (ΔT m/mod = -1.6 to -5.5 °C). However, in the DNA/RNA hybrid the amount of destabilization could be reduced by multiple insertions of the modified unit. In addition, CD spectroscopy of the oligonucleotides hybridized to RNA showed a similar structure than the natural DNA/RNA duplex. Furthermore, since the structural investigation on the nucleoside level by X-ray crystallography and ab initio calculations pointed to a furanose conformation in the southern region, a RNase H cleavage assay was conducted. This experiment revealed that the oligonucleotide containing five modified units was able to elicit the RNase H-mediated cleavage of the complementary RNA strand.

8.
Nucleic Acids Res ; 46(4): 1945-1957, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29309687

RESUMO

Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation.


Assuntos
Estresse Oxidativo , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Citosina/análogos & derivados , Citosina/química , Mutagênese , Peptidil Transferases/metabolismo , RNA Ribossômico/química , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Uridina/análogos & derivados , Uridina/química
9.
Beilstein J Org Chem ; 14: 3088-3097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30643586

RESUMO

Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing unsaturated 6'-fluoro[4.3.0]bicyclo nucleotides (6'F-bc4,3-DNA). Two 6'F-bc4,3 phosphoramidite building blocks (T and C) were synthesized starting from a previously described [3.3.0]bicyclic sugar. The conversion of this sugar to a gem-difluorinated tricyclic intermediate via difluorocarbene addition followed either by a NIS-mediated or Vorbrüggen nucleosidation yielded in both cases the ß-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates afforded the unsaturated 6'F-bc4,3 nucleosides. The successful incorporation of the corresponding phosphoramidite building blocks into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus complementary DNA (ΔT m/mod = -1.5 to -3.7 °C). Molecular dynamics simulation on the nucleoside and oligonucleotide level revealed the preference of the C1'-exo/C2'-endo alignment of the furanose ring. Moreover, the simulation of duplexes with complementary RNA disclosed a DNA/RNA-type duplex structure suggesting that this modification might be a substrate for RNase H.

10.
J Am Soc Mass Spectrom ; 28(12): 2677-2685, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28932996

RESUMO

Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/w or d/z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. Graphical Abstract.


Assuntos
Cátions/química , Citosina/química , DNA/química , Elétrons , Sequência de Bases , Transporte de Elétrons , Radicais Livres/química , Espectrometria de Massas , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Prótons
11.
Mol Ther Nucleic Acids ; 8: 144-157, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918017

RESUMO

Antisense oligonucleotides (AONs) hold promise for therapeutic splice-switching correction in many genetic diseases. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake and sufficient therapeutic efficacy is still difficult to achieve. A novel class of AONs made of tricyclo-DNA (tcDNA) is considered very promising for the treatment of Duchenne muscular dystrophy (DMD), a neuromuscular disease typically caused by frameshifting deletions or nonsense mutations in the gene-encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, and respiratory failure in addition to cognitive impairment. Herein, we report the efficacy and toxicology profile of a 13-mer tcDNA in mdx mice. We show that systemic delivery of 13-mer tcDNA allows restoration of dystrophin in skeletal muscles and to a lower extent in the brain, leading to muscle function improvement and correction of behavioral features linked to the emotional/cognitive deficiency. More importantly, tcDNA treatment was generally limited to minimal glomerular changes and few cell necroses in proximal tubules, with only slight variation in serum and urinary kidney toxicity biomarker levels. These results demonstrate an encouraging safety profile for tcDNA, albeit typical of phosphorothiate AONs, and confirm its therapeutic potential for the systemic treatment of DMD patients.

12.
Mol Ther Nucleic Acids ; 7: 81-89, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624227

RESUMO

Spinal muscular atrophy (SMA) is a recessive disease caused by mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), whose absence dramatically affects the survival of motor neurons. In humans, the severity of the disease is lessened by the presence of a gene copy, SMN2. SMN2 differs from SMN1 by a C-to-T transition in exon 7, which modifies pre-mRNA splicing and prevents successful SMN synthesis. Splice-switching approaches using antisense oligonucleotides (AONs) have already been shown to correct this SMN2 gene transition, providing a therapeutic avenue for SMA. However, AON administration to the CNS presents additional hurdles. In this study, we show that systemic delivery of tricyclo-DNA (tcDNA) AONs in a type III SMA mouse augments retention of exon 7 in SMN2 mRNA both in peripheral organs and the CNS. Mild type III SMA mice were selected as opposed to the severe type I model in order to test tcDNA efficacy and their ability to enter the CNS after maturation of the blood brain barrier (BBB). Furthermore, subcutaneous treatment significantly improved the necrosis phenotype and respiratory function. In summary, our data support that tcDNA oligomers effectively cross the blood-brain barrier and offer a promising systemic alternative for treating SMA.

13.
Chemistry ; 23(43): 10310-10318, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28477335

RESUMO

We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'ß-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications.


Assuntos
Ácidos Nucleicos/química , Oligonucleotídeos/química , Ribonuclease H/química , Sequência de Bases , Configuração de Carboidratos , DNA/química , Ativação Enzimática , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Oligonucleotídeos/síntese química , Transição de Fase , Teoria Quântica , RNA/química , Temperatura
14.
Chem Asian J ; 12(12): 1347-1352, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28371464

RESUMO

The selection of artificial genetic polymers with tailor-made properties for their application in synthetic biology requires the exploration of new nucleosidic scaffolds that can be used in selection experiments. Herein, we describe the synthesis of a bicyclo-DNA triphosphate (i.e., 7',5'-bc-TTP) and show its potential to serve for the generation of new xenonucleic acids (XNAs) based on this scaffold. 7',5'-bc-TTP is a good substrate for Therminator DNA polymerase, and up to seven modified units can be incorporated into a growing DNA chain. In addition, this scaffold sustains XNA-dependent DNA synthesis and potentially also XNA-dependent XNA synthesis. However, DNA-dependent XNA synthesis on longer templates is hampered by competitive misincorporation of deoxyadenosine triphosphate (dATP) caused by the slow rate of incorporation of 7',5'-bc-TTP.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Oligonucleotídeos/biossíntese , Compostos Bicíclicos com Pontes/química , DNA/química , DNA Polimerase Dirigida por DNA/química , Conformação Molecular , Oligonucleotídeos/química
16.
Chemistry ; 23(33): 7953-7968, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28262999

RESUMO

We describe the synthesis and pairing properties of the novel DNA analogue 7',5'-bicyclo(bc)-DNA. In this analogue, the point of attachment of the connecting phosphodiester group is switched from the 3' to the 7' position of the underlying bicyclic sugar unit and is thus in a topological position that is inaccessible in natural DNA. The corresponding phosphoramidite building blocks carrying all natural nucleobases were synthesized and incorporated into oligonucleotides. From Tm experiments of duplexes with complementary DNA and RNA we find that single modifications are generally well tolerated with some variability as to the nature of the nucleobase. Fully modified oligonucleotides show low affinity for RNA and DNA complements. However, they form antiparallel homo-duplexes with similar thermal stability as DNA. CD spectra of the homo-duplexes show distinct changes in the helix conformation compared to natural DNA. A conformational analysis at the ab initio level of the mononucleosides revealed two minimal energy structures which primarily deviate in the conformation of the cyclopentane ring. Molecular dynamics simulation of a 7',5'-bc-DNA homo-duplex revealed a right-handed structure with a smaller helical rise and a significantly wider minor groove compared to DNA. Interestingly, this duplex is characterized by an atypical, alternating 6'-endo/6'-exo conformational pattern of consecutive nucleotides which seems to be responsible for the poor binding to natural nucleic acids.


Assuntos
Compostos Bicíclicos com Pontes/química , DNA/química , Pareamento de Bases , Dicroísmo Circular , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Compostos Organofosforados/química , RNA/química , Termodinâmica , Temperatura de Transição
17.
Chemistry ; 23(9): 2022-2025, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27992671

RESUMO

The modulation of excess electron transfer (EET) within DNA containing a dimethylaminopyrene (C-AP) as an electron donor and 5-bromouracil (Br dU) as an electron acceptor through phenanthrenyl pairs (phen-R) could be achieved by modifying the phenanthrenyl base surrogates with electron withdrawing and donating groups. Arranging the phenanthrenyl units to form a descending LUMO gradient increased the EET efficiency compared to the electron transfer through uniform LUMOs or an ascending LUMO gradient.


Assuntos
DNA/química , Teoria Quântica , Bromouracila/química , Dicroísmo Circular , DNA/metabolismo , Transporte de Elétrons , Elétrons , Oligonucleotídeos/química
18.
J Neuromuscul Dis ; 3(2): 157-167, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854216

RESUMO

Oligonucleotide therapeutics hold great promise for the treatment of various diseases and the antisense field is constantly gaining interest due to the development of more potent and nuclease resistant chemistries. Despite a rather low success rate with only three antisense drugs being clinically approved, the frontiers of AON therapeutic applications have increased over the past three decades and continue to expand thanks to a steady increase in understanding the mechanisms of action of these molecules, progress in chemical modification and delivery.In this review, we will examine the recent advances obtained with the tricyclo-DNA chemistry which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We will review their specific properties and their therapeutic applications mainly for neuromuscular disorders, including exon-skipping for Duchenne muscular dystrophy and exon-inclusion for spinal muscular atrophy, but also aberrant splicing correction for Pompe disease. Finally, we will discuss their advantages and potential limitations, with a focus on the need for careful toxicological screen early in the process of AON drug development.


Assuntos
DNA Antissenso/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Atrofia Muscular Espinal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Éxons , Terapia Genética , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Atrofia Muscular Espinal/genética , Distrofia Muscular de Duchenne/genética , Doenças Neuromusculares/tratamento farmacológico , Doenças Neuromusculares/genética , Splicing de RNA
19.
J Am Soc Mass Spectrom ; 27(7): 1186-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27080005

RESUMO

Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Entropia , Cinética , RNA , Termodinâmica
20.
Nucleic Acids Res ; 44(5): 2187-98, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26733580

RESUMO

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3'-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase ß but repaired only by strand displacement as the 5'-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Oligonucleotídeos/química , Acetais/química , Acetais/metabolismo , Bioensaio , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Clonagem Molecular , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Polimerase beta/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Oligonucleotídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...