Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stat Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757791

RESUMO

HIV estimation using data from the demographic and health surveys (DHS) is limited by the presence of non-response and test refusals. Conventional adjustments such as imputation require the data to be missing at random. Methods that use instrumental variables allow the possibility that prevalence is different between the respondents and non-respondents, but their performance depends critically on the validity of the instrument. Using Manski's partial identification approach, we form instrumental variable bounds for HIV prevalence from a pool of candidate instruments. Our method does not require all candidate instruments to be valid. We use a simulation study to evaluate and compare our method against its competitors. We illustrate the proposed method using DHS data from Zambia, Malawi and Kenya. Our simulations show that imputation leads to seriously biased results even under mild violations of non-random missingness. Using worst case identification bounds that do not make assumptions about the non-response mechanism is robust but not informative. By taking the union of instrumental variable bounds balances informativeness of the bounds and robustness to inclusion of some invalid instruments. Non-response and refusals are ubiquitous in population based HIV data such as those collected under the DHS. Partial identification bounds provide a robust solution to HIV prevalence estimation without strong assumptions. Union bounds are significantly more informative than the worst case bounds without sacrificing credibility.

2.
Biometrics ; 69(3): 624-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23845158

RESUMO

The method of generalized estimating equations (GEE) is a popular tool for analysing longitudinal (panel) data. Often, the covariates collected are time-dependent in nature, for example, age, relapse status, monthly income. When using GEE to analyse longitudinal data with time-dependent covariates, crucial assumptions about the covariates are necessary for valid inferences to be drawn. When those assumptions do not hold or cannot be verified, Pepe and Anderson (1994, Communications in Statistics, Simulations and Computation 23, 939-951) advocated using an independence working correlation assumption in the GEE model as a robust approach. However, using GEE with the independence correlation assumption may lead to significant efficiency loss (Fitzmaurice, 1995, Biometrics 51, 309-317). In this article, we propose a method that extracts additional information from the estimating equations that are excluded by the independence assumption. The method always includes the estimating equations under the independence assumption and the contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries. We apply the method to a longitudinal study of the health of a group of Filipino children.


Assuntos
Nível de Saúde , Funções Verossimilhança , Modelos Estatísticos , Adolescente , Biometria/métodos , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Indicadores Básicos de Saúde , Humanos , Lactente , Estudos Longitudinais , Masculino , Filipinas , Fatores de Tempo
3.
Stat Methods Med Res ; 14(5): 445-56, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16248347

RESUMO

So far, most Phase II trials have been designed and analysed under a frequentist framework. Under this framework, a trial is designed so that the overall Type I and Type II errors of the trial are controlled at some desired levels. Recently, a number of articles have advocated the use of Bayesian designs in practice. Under a Bayesian framework, a trial is designed so that the trial stops when the posterior probability of treatment is within certain prespecified thresholds. In this article, we argue that trials under a Bayesian framework can also be designed to control frequentist error rates. We introduce a Bayesian version of Simon's well-known two-stage design to achieve this goal. We also consider two other errors, which are called Bayesian errors in this article because of their similarities to posterior probabilities. We show that our method can also control these Bayesian-type errors. We compare our method with other recent Bayesian designs in a numerical study and discuss implications of different designs on error rates. An example of a clinical trial for patients with nasopharyngeal carcinoma is used to illustrate differences of the different designs.


Assuntos
Teorema de Bayes , Viés , Ensaios Clínicos Fase II como Assunto/estatística & dados numéricos , Humanos , Modelos Estatísticos , Projetos de Pesquisa , Singapura
4.
Stat Med ; 21(1): 51-63, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11782050

RESUMO

The primary goal of a phase I trial is to find the maximally tolerated dose (MTD) of a treatment. The MTD is usually defined in terms of a tolerable probability, q(*), of toxicity. Our objective is to find the highest dose with toxicity risk that does not exceed q(*), a criterion that is often desired in designing phase I trials. This criterion differs from that of finding the dose with toxicity risk closest to q(*), that is used in methods such as the continual reassessment method. We use the theory of decision processes to find optimal sequential designs that maximize the expected number of patients within the trial allocated to the highest dose with toxicity not exceeding q(*), among the doses under consideration. The proposed method is very general in the sense that criteria other than the one considered here can be optimized and that optimal dose assignment can be defined in terms of patients within or outside the trial. It includes as an important special case the continual reassessment method. Numerical study indicates the strategy compares favourably with other phase I designs.


Assuntos
Ensaios Clínicos Fase I como Assunto/métodos , Teoria da Decisão , Análise Numérica Assistida por Computador , Projetos de Pesquisa/normas , Humanos , Dose Máxima Tolerável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...