Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(3): 1258-1271, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38048302

RESUMO

Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.


Assuntos
Ciclina B1 , Meiose , Poliadenilação , Animais , Camundongos , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Pharmaceutics ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683885

RESUMO

Currently, there are several therapeutic approaches available for wound injury management. However, a better understanding of the underlying mechanisms of how biomaterials affect cell behavior is needed to develop potential repair strategies. Bacterial cellulose (BC) is a bacteria-produced biopolymer with several advantageous qualities for skin tissue engineering. The aim here was to investigate BC-based scaffold on epithelial regeneration and wound healing by examining its effects on the expression of scavenger receptor-A (SR-A) and underlying macrophage behavior. Full-thickness skin wounds were generated on Sprague-Dawley rats and the healing of these wounds, with and without BC scaffolds, was examined over 14 days using Masson's trichome staining. BC scaffolds displayed excellent in vitro biocompatibility, maintained the stemness function of cells and promoted keratinocyte differentiation of cells, which are vital in maintaining and restoring the injured epidermis. BC scaffolds also exhibited positive in vivo effects on the wound microenvironment, including improved skin extracellular matrix deposition and controlled excessive inflammation by reduction of SR-A expression. Furthermore, BC scaffold significantly enhanced epithelialization by stimulating the balance of M1/M2 macrophage re-programming for beneficial tissue repair relative to that of collagen material. These findings suggest that BC-based materials are promising products for skin injury repair.

3.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924332

RESUMO

Mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs), have the most impressive ability to reduce inflammation through paracrine growth factors and cytokines that participate in inflammation. Tumor necrosis factor (TNF)-α bioactivity is a prerequisite in several inflammatory and autoimmune disease models. This study investigated the effects of TNF-α stimulate on ADSCs in the tumor microenvironment. The RNAseq analysis and cytokines assay demonstrated that TNF-α stimulated ADSCs proliferation and pro-inflammatory genes that correlated to leukocytes differentiation were upregulated. We found that upregulation of TLR2 or PTGS2 toward to IRF7 gene-associated with immunomodulatory and antitumor pathway under TNF-α treatment. In TNF-α-treated ADSCs cultured with the bladder cancer (BC) cell medium, the results showed that apoptosis ratio and OCT-4 and TLR2 genes which maintained the self-renewal ability of stem cells were decreased. Furthermore, the cell survival regulation genes including TRAF1, NF-kB, and IRF7 were upregulated in TNF-α-treated ADSCs. Additionally, these genes have not been upregulated in BC cell medium. A parallel study showed that tumor progressing genes were downregulated in TNF-α-treated ADSCs. Hence, the study suggests that TNF-α enhances the immunomodulatory potential of ADSCs during tumorigenesis and provides insight into highly efficacious MSC-based therapeutic options for BC.


Assuntos
Inflamação/patologia , Células-Tronco Mesenquimais/patologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias da Bexiga Urinária/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Imunomodulação/efeitos dos fármacos , Terapia de Imunossupressão , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia
4.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515350

RESUMO

The genome-scale transcriptional programs that specify the mammalian trachea and esophagus are unknown. Though NKX2-1 and SOX2 are hypothesized to be co-repressive master regulators of tracheoesophageal fates, this is untested at a whole transcriptomic scale and their downstream networks remain unidentified. By combining single-cell RNA-sequencing with bulk RNA-sequencing of Nkx2-1 mutants and NKX2-1 ChIP-sequencing in mouse embryos, we delineate the NKX2-1 transcriptional program in tracheoesophageal specification, and discover that the majority of the tracheal and esophageal transcriptome is NKX2-1 independent. To decouple the NKX2-1 transcriptional program from regulation by SOX2, we interrogate the expression of newly-identified tracheal and esophageal markers in Sox2/Nkx2-1 compound mutants. Finally, we discover that NKX2-1 binds directly to Shh and Wnt7b and regulates their expression to control mesenchymal specification to cartilage and smooth muscle, coupling epithelial identity with mesenchymal specification. These findings create a new framework for understanding early tracheoesophageal fate specification at the genome-wide level.


The trachea or windpipe is a tube that connects the throat to the lungs, while the esophagus connects the throat to the stomach. The trachea has cartilage rings that help to ensure clear airflow to the lungs, while the esophagus walls are lined with muscles that help to move food to the stomach. Although there are many differences between them, both the trachea and esophagus form from the same group of cells during development. Proteins called transcription factors help to control the formation of different body parts by switching different groups of genes on and off in different subsets of cells. Existing research has suggested that a transcription factor called NKX2.1 drives trachea formation, while another, called SOX2, is important in esophagus formation. An absence of either of these two proteins is thought to be associated with serious birth defects including loss of the trachea or esophagus, or failure of the two to separate fully. How these two transcription factors interact and drive the development of the trachea and esophagus, however, is currently unclear. Kuwahara et al. used mice to study the role of NKX2.1 and SOX2 in the formation of the trachea and esophagus. The findings identify many new genes that are active in the trachea and esophagus and reveal that NKX2.1 is not a master regulator that controls all of the genes involved in trachea formation. However, NKX2.1 does control several key genes, particularly those involved in forming cartilage in the trachea instead of muscle in the esophagus. The investigation also revealed many genes that are not controlled by NKX2.1 suggesting that other, currently unknown, systems play a major role in trachea formation. More work is required to understand the wider genetic regulators involved in differentiating the trachea from the esophagus. The findings in this study will help researchers to understand birth defects in the trachea and esophagus that result from genetic errors. They also reveal information about gene regulation processes that are relevant to the formation of other body parts and in the context of other diseases. In the long term, they could support regenerative medicine to regrow or replace lost or damaged body parts using lab-grown stem cells.


Assuntos
Esôfago , Traqueia , Transcriptoma/genética , Animais , Esôfago/embriologia , Esôfago/metabolismo , Feminino , Camundongos , Especificidade de Órgãos/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Traqueia/embriologia , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...