Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 608(Pt 1): 720-734, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628328

RESUMO

HYPOTHESIS: Alkyltrimethoxysilane (ATMS) is among most widely used silane coupling agents. These commercially available, reasonably priced chemicals are often utilized to improve the compatibility of inorganic surfaces with organic coatings. With three hydrolysable moieties, ATMS is an outstanding candidate for solving the hydrophilicity, moisture sensitivity and high cost of silica aerogels. However, ATMS has a non-hydrolysable alkyl chain that undergoes cyclization reactions. The alkyl chain prevents ATMS from being incorporated in aerogel structures. Polyvinyltrimethoxysilane (PVTMS) is a silica precursor that offers two types of crosslinking to the final aerogel product. This strong doubly-crosslinked network can potentially suppress the cyclization reactions of ATMS and include it in aerogel structure. EXPERIMENTS: PVTMS was used with ATMS having different alkyl lengths (3-16 carbons) and loadings (25 or 50 wt%) as the silica precursors. Acid and base catalysts were used to perform hydrolysis and condensation reactions on the mixture and ATMS:PVTMS aerogels were obtained via supercritical drying. FINDINGS: The incorporation of ATMS in the aerogels was approved by different characterization methods. Results showed that ATMS:PVTMS aerogels possess hydrophobicity (θ âˆ¼ 130°), moisture resistance, varying surface area (44-916 m2·g-1), meso/microporous structure and thermal insulation properties (λ âˆ¼ 0.03 W·m-1K-1). These samples also showed excellent performance in oil and organic solvent adsorption.


Assuntos
Dióxido de Silício , Adsorção , Géis , Interações Hidrofóbicas e Hidrofílicas , Solventes
2.
Artigo em Inglês | MEDLINE | ID: mdl-31259138

RESUMO

Phase change materials (PCM) have gained extensive attention in thermal energy storage applications. In this work, microencapsulation of vegetable-derived palmitic acid (PA) in bio-based polylactic acid (PLA) shell by solvent evaporation and oil-in-water emulsification was investigated. Fourier transform infrared spectroscopy and scanning electron microscopy were conducted to confirm the successful encapsulation of PA in PLA shells. Differential scanning calorimetry was performed to evaluate the thermal properties, thermal reliability, and core content of the fabricated PCM microcapsules (microPCM). Through a series of parametric studies, the effects of PCM and solvent content, oil phase-to-aqueous phase ratio, as well as surfactant type and content on the morphology, particle size, and thermal properties of the PCM microcapsules were investigated. Experimental results showed that PVA was a superior emulsifier to SDS in the emulsion systems being studied. There also existed an optimal PVA concentration to reduce the average size of microPCM. When the PVA concentration was above this optimal level, the emulsifier molecules tend to form micelles among themselves. This led to the adhesion of tiny microspheres on the surface of microPCM as well as larger microPCM. In short, this work has demonstrated the possibility of using the solvent evaporation method to fabricate 100% bio-based PCM-polymer microcapsules for thermal energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA