Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 4581-4590, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38836359

RESUMO

Polylactide is a high potential polymer that can satisfy the growing demand for sustainable and lightweight materials in construction, packaging, and structural applications. However, their high flammability poses a serious concern. Herein, with the aid of solvent exchange and noncovalent interactions, poly(l-lactide) (PLLA) thermoreversible gel was modified with sodium alginate (SA), chitosan (CS), and phytic acid (PA) via a layer-over-layer approach. Freeze-drying of the modified hydrogel furnished a highly flame retardant aerogel with shape stability and no shrinkage. The modified PLLA aerogel (PLLA@SA@CS@PA) exhibited self-extinguishment of flame, the highest limiting oxygen index of any porous polylactide (∼32%), and a tremendous reduction in flammability parameters such as the heat release rate, heat release capacity, total heat release, etc. A comprehensive mechanism of flame retardancy was proposed. This work provides a sustainable strategy for the flame retardant modification of semicrystalline polymer-based aerogels and is expected to expand their practical applications in various industrial sectors.


Assuntos
Alginatos , Quitosana , Retardadores de Chama , Poliésteres , Poliésteres/química , Alginatos/química , Quitosana/química , Géis/química , Eletricidade Estática , Ácido Fítico/química , Porosidade , Hidrogéis/química
2.
Nanoscale ; 16(13): 6449-6454, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38436416

RESUMO

Thermally activated blue-to-purple luminescence of Co-modified nano-sandrose MgAl-layered double hydroxides (LDHs) is concentration dependent, occurring only for MgCoAl-LDH with a molar metal cation concentration of 15% Co. Temperature sweep luminescence spectroscopy between 83 K and 298 K shows that the luminescence is strongest at room temperature, increasing with an activation energy of 1 kJ mol-1 between these temperatures. The luminescence occurs in a broad, but fine-structured band below the conduction band (CB) edge at 3.0 eV after excitation at 5.0 eV.

3.
Pharmaceutics ; 14(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365199

RESUMO

The insect repellent ethyl butylacetylaminopropionate (IR3535) was used as a functional additive for poly (l-lactic acid) (PLLA) to modify its structure and mechanical properties and achieve insect repellency. PLLA/IR3535 mixtures at various compositions were prepared via melt extrusion. In the analyzed composition range of 0 to 23 m% IR3535, PLLA and IR3535 were miscible at the length scale represented by the glass transition temperature. Addition of IR3535 resulted in a significant decrease in the glass transition temperature of PLLA, as well as in the elastic modulus, indicating its efficiency as a plasticizer. All mixtures were amorphous after extrusion, though PLLA/IR3535 extrudates with an IR3535 content between 18 and 23 m% crystallized during long-term storage at ambient temperature, due to their low glass transition temperature. Quantification of the release of IR3535 into the environment by thermogravimetric analysis at different temperatures between 50 and 100 °C allowed the estimation of the evaporation rate at lower temperatures, suggesting an extremely low release rate with a time constant of the order of magnitude of 1-2 years at body temperature.

4.
Polymers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641267

RESUMO

This work analyzes the thermal degradation and mechanical properties of iron (Fe)-containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were prepared using the melt mixing method by a small-scale compounder. Three different loadings of LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer, and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer. Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscosity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A decrease in mechanical properties interpreted as increased catalytic degradation was also observed in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful where faster degradation or faster recycling of polymer nanocomposites is required because of environmental issues.

5.
Materials (Basel) ; 14(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573227

RESUMO

Malaria is still a major tropical disease, with Africa particularly burdened. It has been proposed that outdoor protection could aid substantially in reducing the malaria incidence rate in rural African communities. Recently, melt-spun polyolefin fibers containing mosquito repellents have been shown to be promising materials to this end. In this study, the incorporation of N,N­Diethyl­3­methylbenzamide (DEET)-a popular and widely available mosquito repellent-in commercially available, amorphous poly(D,L-lactic acid) (PDLLA) is investigated with the aim of producing biodegradable mosquito-repelling filaments with a reduced environmental impact. It is shown to be possible to produce macroscopically stable PDLLA-DEET compounds containing up to 20 wt.-% DEET that can be melt-spun to produce filaments, albeit at relatively low take-up speeds. A critical DEET content allows for stress-induced crystallization during the spinning of the otherwise amorphous PDLLA, resulting in the formation of α-crystals. Although the mechanical integrity of the filaments is notably impacted by the incorporation of DEET, these filaments show potential as materials that can be used for Malaria vector control.

6.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019705

RESUMO

This work highlights the use of Fe-modified MgAl-layered double hydroxides (LDHs) to replace dye and semiconductor complexes in dye-sensitized solar cells (DSSCs), forming a layered double hydroxide solar cell (LDHSC). For this purpose, a MgAl-LDH and a Fe-modified MgAl LDH were prepared. X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy were used to analyze the structural properties, morphology, and success of the Fe-modification of the synthesized LDHs. Ultraviolet-visible (UV-Vis) absorption spectroscopy was used to analyze the photoactive behavior of these LDHs and compare it to that of TiO2 and dye-sensitized TiO2. Current-voltage (I-V) solar simulation was used to determine the fill factor (FF), open circuit voltage (VOC), short circuit current (ISC), and efficiency of the LDHSCs. It was shown that the MgFeAl-LDH can act as a simultaneous photoabsorber and charge separator, effectively replacing the dye and semiconductor complex in DSSCs and yielding an efficiency of 1.56%.

7.
Polymers (Basel) ; 12(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192140

RESUMO

It is generally known that significant improvements in the properties of nanocomposites can be achieved with graphene types currently commercially available. However, so far this is only possible on a laboratory scale. Thus, the aim of this study was to transfer results from laboratory scale experiments to industrial processes. Therefore, nanocomposites based on polyamide (PA) and graphene nanoplatelets (GnP) were prepared in order to produce membranes with improved gas barrier properties, which are characterized by reduced permeation rates of helium. First, nanocomposites were prepared with different amounts of commercial availably graphene nanoplatelets using a semi-industrial-scale compounder. Subsequently, films were produced by compression molding at different temperatures, as well as by flat film extrusion. The extruded films were annealed at different temperatures and durations. In order to investigate the effect of thermal treatment on barrier properties in correlation to thermal, structural, and morphological properties, the films were characterized by differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), optical microscopy (OM), transmission electron microscopy (TEM), melt rheology measurements, and permeation measurements. In addition to structural characterization, mechanical properties were investigated. The results demonstrate that the permeation rate is strongly influenced by the processing conditions and the filler content. If the filler content is increased, the permeation rate is reduced. The annealing process can further enhance this effect.

8.
RSC Adv ; 9(2): 658-667, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517586

RESUMO

This research work is based on the comparison of the mixing phenomena of magnesium-aluminum (MgAl) layered double hydroxides (LDHs) intercalated by dodecylbenzene sulfonate (MgAl-DBS) in poly(lactic acid) (PLA). Two mixing techniques were used to compare the dispersion of LDHs in PLA such as sonication-assisted masterbatch (SAM) melt mixing and direct melting (DM) methods. MgAl LDHs synthesized by the urea hydrolysis method and intercalated with DBS anions using anion exchange reaction and were used in different ratios in PLA (1.25, 2.5, and 5 wt%). MgAl LDHs and their anion intercalation were studied by the X-ray diffraction analysis (XRD) method. Different properties of LDH/PLA composites were compared to analyze the effect of these mixing techniques. Dispersion and exfoliation of LDHs in PLA were investigated by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Influences on the rheological properties were evaluated by analyzing the complex viscosities (η*), storage modulus (G') and loss modulus (G'') by using a rheometer. The thermal properties, thermal stability and effect on crystallinity of composites made with the two mixing techniques were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) respectively. The mixing mechanism and amount of MgAl-DBS LDHs have a notable effect on the properties of PLA composites with sonication-assisted masterbatch melt mixing techniques giving better dispersion of LDHs in PLA composites as compared to direct melt mixing.

9.
RSC Adv ; 9(6): 3030-3040, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518998

RESUMO

This paper details a successful synthesis and comparison of a range of tri-metal hydrotalcite-like layered double hydroxides (LDHs) using urea hydrolysis. Transition-metal-substituted MgMAl-LDHs were synthesized with M = Fe, Co, Ni, Cu or Zn. 5 mol% and 10 mol% substitutions were performed, where Mg was substituted with Co, Ni, Cu and Zn, and Al with Fe. The successful synthesis of crystalline MgMAl-LDHs was confirmed using X-ray powder diffraction (XRD) analysis. Energy-dispersive X-ray (EDX) spectroscopy was used to identify substituted metals and determine changes in composition. Changes in morphology were studied using scanning electron microscopy (SEM). Thermogravimetric analysis was used to determine the effect of Fe-, Co-, Ni-, Cu- or Zn-substitution on the thermal degradation of the MgMAl-LDH phase. The structure, morphology and thermal behavior of the LDHs were shown to be influenced by the substituted transition metals. The observed thermal stability took the order MgNiAl- > MgFeAl- = MgAl- ≥ MgCoAl- > MgCuAl- > MgZnAl-LDH. The urea hydrolysis method was shown to be a simple preparation method for well-defined crystallite structures with large hexagonal platelets and good distribution of transition metal atoms in the substituted LDHs.

10.
RSC Adv ; 9(48): 28262-28275, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530444

RESUMO

Comparison of layered double hydroxides (LDHs) synthesised using different methods, conditions and post-treatment is difficult to achieve because these greatly modify their material properties. This paper aims to provide a comparison of material properties for modified quintinite, where all LDHs were synthesised at the same conditions - thus allowing for direct comparison of the material properties obtained. Nano-structured materials were formed in all cases. The nano-structured transition metal (TM) MgMAl-LDHs were synthesised using constant pH co-precipitation. Five TMs (M = Fe, Co, Ni, Cu, Zn) were included in the LDH layers with molar substitutions of 0.5%, 1%, 5%, 10%, and 25% based on Mg-replacement for divalent TM cations and Al-replacement for trivalent TM cations. The materials were characterised using powder X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared analysis (ATR-FTIR), thermogravimetric analysis (TGA) and particle size analysis (PSA). The modified LDHs were synthesised free of major by-products and with similar morphologies. It could be shown that the crystallite dimensions varied between the different TM substitutions, that morphological changes were visible for some of the TMs used, that the processability depended on the TMs substituted, and that the substitution of TMs influenced the thermal stability of the LDHs.

11.
Mater Sci Eng C Mater Biol Appl ; 91: 754-761, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033310

RESUMO

Core-sheath structured fibres were developed for application as part of an alternative malaria vector control intervention aimed at reducing outdoor malaria transmission. The fibres were prepared by melt spinning of high density polyethylene (HDPE) as sheath and with a concentrate containing volatile N,N-Diethyl-m-toluamide (DEET) in poly(ethylene-co-vinyl acetate) (EVA) as core. The concentrate was prepared by a simple absorption processes to a content up to 40 wt% DEET. Scanning electron microscope imaging confirmed the formation of a bicomponent core-sheath fibre structure. Confocal Raman spectroscopy revealed the development of a concentration gradient of DEET in the sheath layer, suggesting a diffusion controlled release process. Excellent processability was demonstrated on an extrusion system melt spinning with take up speeds reaching 3000 m min-1. Sample textiles knitted from such filaments showed high residual repellence activity even after 20 cold washes or after eight months ageing under laboratory conditions. These findings indicate that this technology offers an alternative way to prevent outdoor mosquito bites in an effective and affordable manner.


Assuntos
Culicidae/efeitos dos fármacos , DEET/toxicidade , Repelentes de Insetos/toxicidade , Polietileno/química , Animais , Preparações de Ação Retardada , Feminino , Imageamento Tridimensional , Análise Espectral Raman , Estresse Mecânico , Têxteis , Termogravimetria , Volatilização
12.
RSC Adv ; 8(52): 29789-29796, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547309

RESUMO

In this research, the use of layered double hydroxides (LDHs) as ultraviolet (UV) light-protecting additives for PP is explored. Different LDHs, such as ZnTi, ZnSn, ZnGa, ZnCr and CdCr LDHs, were prepared and their UV absorptions were characterized. The ZnTi LDHs showed higher UV absorption than the other four metallic combinations and were further organically modified with dodecylbenzene sodium sulfonate (SDBS) and lauric acid (LA). Nanocomposites of polypropylene (PP) with four different types of LDHs, ZnTi, ZnSn, ZnTi-SDBS and ZnTi-LA, were prepared at concentrations of 5%. The crystallinities and layered structures of all the metallic combinations of LDHs were characterized by wide angle X-ray spectroscopy (WAXS) and ultraviolet visible (UV-vis) absorption spectroscopy, and their crystal morphologies were studied by scanning electron microscopy (SEM). The decomposition and thermal properties of the nanocomposites and pure PP were analyzed by thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) and by their photo-oxidation behavior. The addition of these organically modified and unmodified LDHs showed significant changes in the thermal decomposition of PP. The thermal stability of PP was increased to around 70 °C by the addition of SDBS-modified ZnTi LDHs (5% by weight), and an increase in induction time of about 300% was determined.

13.
RSC Adv ; 8(73): 42189-42199, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35558792

RESUMO

In this study, a novel bio-based flame retardant material consisting of modified vanillin and poly(lactic acid) (PLA) was developed by incorporation of newly discovered additive, bis(5-formyl-2-methoxyphenyl) phenylphosphonate (VP), into the PLA matrix. The chemical structure of VP was confirmed by 1H-, 13C- and 31P NMR and FTIR. The flame retardancy, thermal behavior as well as the mechanical properties of PLA/VP composites were evaluated. With 5 wt% of VP, the LOI of PLA increased from 21.4 to 25.8 and passed the UL-94 V-0 classification. Additionally, the elongation at break was improved from 3% to 11% without sacrificing tensile strength. In an effort to understand the mechanisms, TGA-FTIR, TGA and SEM were performed. This paper suggests a new possibility to prepare polymeric composites with enhanced flame retardancy from sustainable resources.

14.
ACS Omega ; 2(1): 20-31, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457206

RESUMO

Sonication-assisted delamination of layered double hydroxides (LDHs) resulted in smaller-sized LDH nanoparticles (∼50-200 nm). Such delaminated Co-Al LDH, Zn-Al LDH, and Co-Zn-Al LDH solutions were used for the preparation of highly dispersed isotactic polypropylene (iPP) nanocomposites. Transmission electron microscopy and wide-angle X-ray diffraction results revealed that the LDH nanoparticles were well dispersed within the iPP matrix. The intention of this study is to understand the influence of the intralayer metal composition of LDH on the various properties of iPP/LDH nanocomposites. The sonicated LDH nanoparticles showed a significant increase in the crystallization rate of iPP; however, not much difference in the crystallization rate of iPP was observed in the presence of different types of LDH. The dynamic mechanical analysis results indicated that the storage modulus of iPP was increased significantly with the addition of LDH. The incorporation of different types of LDH showed no influence on the storage modulus of iPP. But considerable differences were observed in the flame retardancy and thermal stability of iPP with the type of LDH used for the preparation of nanocomposites. The thermal stability (50% weight loss temperature (T 0.5)) of the iPP nanocomposite containing three-metal LDH (Co-Zn-Al LDH) is superior to that of the nanocomposites made of two-metal LDH (Co-Al LDH and Zn-Al LDH). Preliminary studies on the flame-retardant properties of iPP/LDH nanocomposites using microscale combustion calorimetry showed that the peak heat release rate was reduced by 39% in the iPP/Co-Zn-Al LDH nanocomposite containing 6 wt % LDH, which is higher than that of the two-metal LDH containing nanocomposites, iPP/Co-Al LDH (24%) and iPP/Zn-Al LDH (31%). These results demonstrated that the nanocomposites prepared using three-metal LDH showed better thermal and flame-retardant properties compared to the nanocomposites prepared using two-metal LDH. This difference might be due to the better char formation capability of three-metal LDH compared to that of two-metal LDH.

15.
Mater Sci Eng C Mater Biol Appl ; 41: 8-16, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907731

RESUMO

Layered double hydroxide (LDH) was synthesized and organically modified with camphorsulfonic acid (CSA) and ciprofloxacin. The thermal stability of CSA was improved remarkably under LDH shielding. A minimal inhibitory concentration of free CSA against tested bacteria was determined in order to define the essential quantity in LDH modification. The modified LDHs were melt-compounded with high density polyethylene and the prepared nanocomposites were further melt-spun using a piston-type spinning device. The melt-spun fibers were tested for their antimicrobial activity against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. CSA integrated fibers show susceptibility against Gram-positive bacteria and ciprofloxacin integrated fibers showed activity against both Gram-positive and Gram-negative bacteria.


Assuntos
Anti-Infecciosos/química , Hidróxidos/química , Nanocompostos/química , Polietileno/química , Alumínio/química , Anti-Infecciosos/farmacologia , Ciprofloxacina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Magnésio/química , Testes de Sensibilidade Microbiana
16.
ACS Appl Mater Interfaces ; 5(18): 8991-7, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23927608

RESUMO

Dye structure-intercalated layered double hydroxide (d-LDH) was synthesized using a one-step method, and its intercalated behaviors have been characterized by Fourier transform infrared spectroscopy (FTIR), wide angle X-ray scattering (WAXS), scanning electron microscopy, thermogravimetric analysis (TGA), etc. As a novel functional potential fire-retarding nanofiller, it was used to prepare a polypropylene-grafted maleic anhydride (PP-g-MA)/d-LDH composite by refluxing the mixture of d-LDH and PP-g-MA in xylene, aiming to investigate its effect on the flammability of the PP-g-MA composite. The morphological properties, thermal stability, and flame retardant properties of the PP-g-MA/d-LDH composite were determined by FTIR, WAXS, transmission electron microscopy, TGA, and microscale combustion calorimetry. Compared with NO3-LDH (unmodified LDH) and LDH intercalated by sodium dodecylbenzenesulfonate (conventional organo-modified LDH), d-LDH can significantly decrease the heat release rate and the total heat release of the PP-g-MA composite, offering a new approach to imparting low flammability to LDH-based polymer composites.

17.
Langmuir ; 28(34): 12601-8, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22845883

RESUMO

Nanocomposites derived from poly(lactic acid) (PLA) and organically modified montmorillonite (oMMT) have been cross-linked by high-energy electrons in the presence of triallyl cyanurate (TAC). The morphology of untreated and cross-linked PLA/MMT nanocomposites was characterized by wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). This treatment can improve both the thermal stability and the glass-transition temperatures of the PLA nanocomposites (e.g., PLA-MMT-TAC 30kGy, 50kGy, and 70kGy) because of the formation of cross-linking structures in the nanocomposites that will considerably reduce the mobility of polymers. Interestingly, at relatively low irradiation doses (e.g., 30 and 50 kGy) a good balance between tensile strength and elongation at break for the PLA nanocomposites could be achieved. These mechanical properties are superior to those of pure PLA. Therefore, combining nanotechnology and electron beam cross-linking is a promising new method of simultaneously improving the mechanical properties (toughness and tensile strength) and thermal stability of PLA.

18.
Macromol Rapid Commun ; 33(4): 337-42, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22271599

RESUMO

Elastomeric composites are prepared based on solution styrene butadiene elastomer and zinc-aluminium layered double hydroxides (LDH), using a conventional sulphur cure system. Up to 100 parts per hundred rubber of LDH are incorporated into the elastomer matrix. The composites exhibit an interesting phenomenon of thermoreversible transparency, i.e. the transparent sample becomes opaque at warm condition and restores the transparency at room temperature. The transparency is found to be increased as the amount of LDH was increased. The addition of LDH gradually improved the mechanical, dynamic mechanical performance and thermal stability of the base elastomer. These developped elastomers could be utilised as smart materials in different applications.


Assuntos
Hidróxido de Alumínio/química , Materiais Biocompatíveis/química , Butadienos/química , Elastômeros/química , Hidróxidos/química , Estirenos/química , Compostos de Zinco/química , Teste de Materiais , Propriedades de Superfície , Resistência à Tração
19.
Langmuir ; 26(17): 14162-9, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20712354

RESUMO

Synthesis of polypropylene/organo-layered double hydroxide (PP/OLDH) has been carried out based on self-assembled organocobalt-aluminum LDH (O-CoAl-LDH). The novel method of synthesizing self-assembled CoAl-LDH and its characterization have also been reported in details. This method is proven to be very efficient way of producing OLDH in a single step with homogeneous composition and structure. As flame-retardant nanofiller, O-CoAl-LDH shows significant decrease in heat release rate (HRR), the total heat release (THR) and the heat release capacity (HRC) of the PP composites, though the thermal stability of the compounds decreases slightly compared to the base polymer. Morphological analyses show that the LDH particles are dispersed in PP matrix in a partially exfoliated form. The activation energy calculation based on the Kissinger method reveals that O-CoAl-LDH has a positive effect on the activation energy of thermal decomposition of PP. However, in the presence of this filler, decomposition of the composites starts at an earlier stage than that of pure PP.


Assuntos
Alumínio/química , Cobalto/química , Hidróxidos/química , Nanoestruturas/química , Compostos Organometálicos/síntese química , Polipropilenos/química , Compostos Organometálicos/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...