Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854041

RESUMO

Background: There are >14,500 structurally diverse per- and polyfluoroalkyl substances (PFAS). Despite knowledge that these "forever chemicals" are in 99% of humans, mechanisms of toxicity and adverse health effects are incompletely known. Furthermore, the contribution of genetic variation to PFAS susceptibility and health consequences is unknown. Objectives: We determined the toxicity of a structurally distinct set of PFAS in twelve genetically diverse strains of the genetic model system Caenorhabditis elegans. Methods: Dose-response curves for four perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), two perfluoroalkyl sulfonic acids (PFOS and PFBS), two perfluoroalkyl sulfonamides (PFOSA and PFBSA), two fluoroether carboxylic acids (GenX and PFMOAA), one fluoroether sulfonic acid (PFEESA), and two fluorotelomers (6:2 FCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and eleven genetically diverse wild strains. Body length was quantified by image analysis at each dose after 48 hr of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). Results: There was a significant range in toxicity among PFAS: PFOSA > PFBSA ≈ PFOS ≈ PFNA > PFOA > GenX ≈ PFEESA > PFBS ≈ PFPeA ≈ PFBA. Long-chain PFAS had greater toxicity than short-chain, and fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation explained variation in susceptibility to PFBSA, PFOS, PFBA, PFOA, GenX, PFEESA, PFPeA, and PFBA. There was significant variation in toxicity among C. elegans strains due to chain length, functional group, and between legacy and emerging PFAS. Conclusion: C. elegans respond to legacy and emerging PFAS of diverse structures, and this depends on specific structures and genetic variation. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful New Approach Methodology (NAM) to investigate structure-activity relationships and mechanisms of toxicity which may inform regulation of other PFAS to improve human and environmental health.

2.
Nucleic Acids Res ; 50(15): 8626-8642, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947695

RESUMO

Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.


Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , Caenorhabditis elegans/genética , Cádmio/toxicidade , Aflatoxina B1/toxicidade , Acúmulo de Mutações , Mitocôndrias/genética , Mutação , Células Germinativas
3.
Curr Environ Health Rep ; 8(4): 294-308, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34761353

RESUMO

PURPOSE OF REVIEW: Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS: Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.


Assuntos
DNA Mitocondrial , Raios Ultravioleta , Envelhecimento/genética , Animais , Biomarcadores , Dano ao DNA , DNA Mitocondrial/genética , Exposição Ambiental/efeitos adversos , Humanos , Mitocôndrias/genética , Mutagênese , Mutação
4.
Methods Mol Biol ; 2310: 91-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34096001

RESUMO

Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for simultaneous isolation of mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. We also briefly describe factors that affect mtDNA copy number and discuss caveats to its use as a biomarker.


Assuntos
Núcleo Celular/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Dosagem de Genes , Mitocôndrias/genética , Reação em Cadeia da Polimerase em Tempo Real , Animais , Caenorhabditis elegans/genética , DNA Fúngico/genética , Drosophila melanogaster/genética , Fundulidae/genética , Humanos , Camundongos , Oryzias/genética , Ratos , Saccharomyces cerevisiae/genética , Peixe-Zebra/genética
5.
Am J Physiol Cell Physiol ; 315(6): C781-C792, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133321

RESUMO

Starvation significantly alters cellular physiology, and signs of aging have been reported to occur during starvation. Mitochondria are essential to the regulation of cellular energetics and aging. We sought to determine whether mitochondria exhibit signs of aging during starvation and whether quality control mechanisms regulate mitochondrial physiology during starvation. We describe effects of starvation on mitochondria in the first and third larval stages of the nematode Caenorhabditis elegans. When starved, C. elegans larvae enter developmental arrest. We observed fragmentation of the mitochondrial network, a reduction in mitochondrial DNA (mtDNA) copy number, and accumulation of DNA damage during starvation-induced developmental arrest. Mitochondrial function was also compromised by starvation. Starved worms had lower basal, maximal, and ATP-linked respiration. These observations are consistent with reduced mitochondrial quality, similar to mitochondrial phenotypes during aging. Using pharmacological and genetic approaches, we found that worms deficient for autophagy were short-lived during starvation and recovered poorly from extended starvation, indicating sensitivity to nutrient stress. Autophagy mutants unc-51/Atg1 and atg-18/Atg18 maintained greater mtDNA content than wild-type worms during starvation, suggesting that autophagy promotes mitochondrial degradation during starvation. unc-51 mutants also had a proportionally smaller reduction in oxygen consumption rate during starvation, suggesting that autophagy also contributes to reduced mitochondrial function. Surprisingly, mutations in genes involved in mitochondrial fission and fusion as well as selective mitophagy of damaged mitochondria did not affect mitochondrial content during starvation. Our results demonstrate the profound influence of starvation on mitochondrial physiology with organismal consequences, and they show that these physiological effects are influenced by autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia/genética , Caenorhabditis elegans/fisiologia , Dinâmica Mitocondrial/genética , Inanição/genética , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dano ao DNA/genética , DNA Mitocondrial/genética , Larva/genética , Larva/metabolismo , Longevidade/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitofagia/genética , Inanição/metabolismo
6.
Curr Protoc Toxicol ; 76(1): e50, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-30040241

RESUMO

Given the crucial role of DNA damage in human health and disease, it is important to be able to accurately measure both mitochondrial and nuclear DNA damage. This article describes a method based on a long-amplicon quantitative PCR-based assay that does not require a separate mitochondrial isolation step, which can often be labor-intensive and generate artifacts. The detailed basic protocol presented here is newly revised, with particular attention to application in Homo sapiens, Rattus norvegicus, and Caenorhabditis elegans resulting from changes in availability of PCR reagents. Optimized extraction support protocols are also described for high-quality DNA from multiple rat tissues for which these procedures had not previously been described. © 2018 by John Wiley & Sons, Inc.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , DNA/efeitos dos fármacos , Reação em Cadeia da Polimerase/métodos , Animais , Caenorhabditis elegans , Núcleo Celular/efeitos dos fármacos , Humanos , Ratos , Reação em Cadeia da Polimerase em Tempo Real/métodos
7.
Toxicology ; 391: 42-53, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28789970

RESUMO

Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.


Assuntos
Ecotoxicologia/métodos , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Medição de Risco , Fatores de Tempo
8.
Toxicology ; 387: 81-94, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602540

RESUMO

Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases. Using the model organism Caenorhabditis elegans, we screened ten mitochondrial toxicants (2, 4-dinitrophenol, acetaldehyde, acrolein, aflatoxin B1, arsenite, cadmium, cisplatin, doxycycline, paraquat, rotenone) for increased or decreased toxicity in fusion (fzo-1, eat-3)-, fission (drp-1)-, and mitophagy (pdr-1, pink-1)-deficient nematodes using a larval growth assay. In general, fusion-deficient nematodes were the most sensitive to toxicants, including aflatoxin B1, arsenite, cisplatin, paraquat, and rotenone. Because arsenite was particularly potent in fission- and fusion-deficient nematodes, and hundreds of millions of people are chronically exposed to arsenic, we investigated the effects of these genetic deficiencies on arsenic toxicity in more depth. We found that deficiencies in fission and fusion sensitized nematodes to arsenite-induced lethality throughout aging. Furthermore, low-dose arsenite, which acted in a "mitohormetic" fashion by increasing mitochondrial function (in particular, basal and maximal oxygen consumption) in wild-type nematodes by a wide range of measures, exacerbated mitochondrial dysfunction in fusion-deficient nematodes. Analysis of multiple mechanistic changes suggested that disruption of pyruvate metabolism and Krebs cycle activity underlie the observed arsenite-induced mitochondrial deficits, and these disruptions are exacerbated in the absence of mitochondrial fusion. This research demonstrates the importance of mitochondrial dynamics in limiting arsenite toxicity by permitting mitochondrial adaptability. It also suggests that individuals suffering from deficiencies in mitodynamic processes may be more susceptible to the mitochondrial toxicity of arsenic and other toxicants.


Assuntos
Arsenitos/toxicidade , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Compostos de Sódio/toxicidade , Animais , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Interação Gene-Ambiente , Genótipo , Larva/efeitos dos fármacos , Larva/metabolismo , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Toxicol Appl Pharmacol ; 283(2): 99-108, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25585350

RESUMO

Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch(ICN-TG)). Following exposure of adult Notch(ICN-TG) mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3µg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch(ICN-TG) offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch(ICN-TG) offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression.


Assuntos
Dibenzodioxinas Policloradas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptor Notch1/biossíntese , Linfócitos T/efeitos dos fármacos , Timoma/induzido quimicamente , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Receptor Notch1/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Timoma/imunologia , Timoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...