Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750844

RESUMO

Botrytis cinerea and Penicillium expansum are phytopathogenic fungi that produce the deterioration of fruits. Thus, essential oil (EO) has emerged as a sustainable strategy to minimize the use of synthetic fungicides, but their volatility and scarce solubility restrict their application. This study proposes the EO of Oreganum vulgare and Thymus vulgaris-loaded solid lipid nanoparticles (SLN) based chitosan/PVA hydrogels to reduce the infestation of fungi phytopathogen. EO of O. vulgare and T. vulgaris-loaded SLN had a good homogeneity (0.21-0.35) and stability (-28.8 to -33.0 mV) with a mean size of 180.4-188.4 nm. The optimization of EO-loaded SLN showed that the encapsulation of 800 and 1200 µL L-1 of EO of O vulgare and T. vulgaris had the best particle size. EO-loaded SLN significantly reduced the mycelial growth and spore germination of both fungi pathogen. EO-loaded SLN into hydrogels showed appropriate physicochemical characteristics to apply under environmental conditions. Furthermore, rheological analyses evidenced that hydrogels had solid-like characteristics and elastic behavior. EO-loaded SLN-based hydrogels inhibited the spore germination in B. cinerea (80.9 %) and P. expansum (55.7 %). These results show that SLN and hydrogels are eco-friendly strategies for applying EO with antifungal activity.


Assuntos
Botrytis , Quitosana , Hidrogéis , Nanopartículas , Óleos Voláteis , Penicillium , Quitosana/química , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Hidrogéis/química , Nanopartículas/química , Lipídeos/química , Antifúngicos/farmacologia , Antifúngicos/química , Reologia , Tamanho da Partícula , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Lipossomos
2.
Microbiol Res ; 277: 127486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742453

RESUMO

Botrytis cinerea and Penicillium expansum produce deterioration in fruit quality, causing losses to the food industry. Thus, plant essential oils (EOs) have been proposed as a sustainable alternative for minimizing the application of synthetic fungicides due to their broad-spectrum antifungal properties. This study investigated the efficacy of five EOs in suppressing the growth of B. cinerea and P. expansum and their potential antifungal mechanisms. EOs of Mentha × piperita L., Origanum vulgare L., Thymus vulgaris L., Eucalyptus globules Labill., and Lavandula angustifolia Mill., were screened for both fungi. The results showed that the EO of T. vulgaris and O. vulgare were the most efficient in inhibiting the growth of B. cinerea and P. expansum. The concentration increase of all EO tested increased fungi growth inhibition. Exposure of fungi to EOs of T. vulgaris and O. vulgare increased the pH and the release of constituents absorbing 260 nm and soluble proteins, reflecting membrane permeability alterations. Fluorescence microscopic examination revealed that tested EOs produce structural alteration in cell wall component deposition, decreasing the hypha width. Moreover, propidium iodide and Calcein-AM stains evidenced the loss of membrane integrity and reduced cell viability of fungi treated with EOs. Fungi treated with EOs decreased the mitochondria activity and the respiratory process. Therefore, these EOs are effective antifungal agents against B. cinerea and P. expansum, which is attributed to changes in the cell wall structure, the breakdown of the cell membrane, and the alteration of the mitochondrial activity.


Assuntos
Óleos Voláteis , Penicillium , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Botrytis
3.
Microorganisms ; 11(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677512

RESUMO

This work provides the basis for implementing a continuous treatment system using a bacterial consortium for wastewater containing a pesticide mixture of iprodione (IPR) and chlorpyrifos (CHL). Two bacterial strains (Achromobacter spanius C1 and Pseudomonas rhodesiae C4) isolated from the biomixture of a biopurification system were able to efficiently remove pesticides IPR and CHL at different concentrations (10 to 100 mg L-1) from the liquid medium as individual strains and free consortium. The half-life time (T1/2) for IPR and CHL was determined for individual strains and a free bacterial consortium. However, when the free bacterial consortium was used, a lower T1/2 was obtained, especially for CHL. Based on these results, an immobilized bacterial consortium was formulated with each bacterial strain encapsulated individually in alginate beads. Then, different inoculum concentrations (5, 10, and 15% w/v) of the immobilized consortium were evaluated in batch experiments for IPR and CHL removal. The inoculum concentration of 15% w/v demonstrated the highest pesticide removal. Using this inoculum concentration, the packed-bed bioreactor with an immobilized bacterial consortium was operated in continuous mode at different flow rates (30, 60, and 90 mL h-1) at a pesticide concentration of 50 mg L-1 each. The performance in the bioreactor demonstrated that it is possible to efficiently remove a pesticide mixture of IPR and CHL in a continuous system. The metabolites 3,5-dichloroaniline (3,5-DCA) and 3,5,6-trichloro-2-pyridinol (TCP) were produced, and a slight accumulation of TCP was observed. The bioreactor was influenced by TCP accumulation but was able to recover performance quickly. Finally, after 60 days of operation, the removal efficiency was 96% for IPR and 82% for CHL. The findings of this study demonstrate that it is possible to remove IPR and CHL from pesticide-containing wastewater in a continuous system.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35010706

RESUMO

Giant squid hydrolysate (GSH) elaborated from different batches from a fishing company was evaluated for cadmium removal. Fixed-bed column packed with iminodiacetic resin as adsorbent was used. GSH solution at different cadmium concentrations were fed in the fixed-bed column and breakthrough curves were evaluated. A high degree of metal removal from the solution was achieved and the saturation point (Ce/C0 ≤ 0.8) was achieved more quickly at higher concentrations of cadmium. The maximum capacity of adsorption (q0) was obtained using the Thomas model, where 1137.4, 860.4, 557.4, and 203.1 mg g-1 were achieved using GSH with concentrations of 48.37, 20.97, 12.13, and 3.26 mg L-1, respectively. Five cycles of desorption of the resin with HCl (1 M) backflow and regeneration with NaOH (0.5 M) were also evaluated, where no significant differences (p-value > 0.05) were observed between each cycle, with an average of 935.9 mg g-1 of qmax. The in-series columns evaluated reached a total efficiency of 90% on average after the third column in GSH with a cadmium concentration of 20.97 mg L-1. This kind of configuration should be considered the best alternative for cadmium removal from GSH. Additionally, the chemical composition of GSH, which was considered a quality parameter, was not affected by cadmium adsorption.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Adsorção , Cádmio , Decapodiformes , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...