Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30348871

RESUMO

Ecosystem engineers can increase biodiversity by creating novel habitat supporting species that would otherwise be absent. Their more routine activities further influence the biota occupying engineered habitats. Beavers are well-known for transforming ecosystems through dam building and are therefore increasingly being used for habitat restoration, adaptation to climate extremes and in long-term rewilding. Abandoned beaver ponds (BP) develop into meadows or forested wetlands that differ fundamentally from other terrestrial habitats and thus increase landscape diversity. Active BP, by contrast, are superficially similar to other non-engineered shallow wetlands, but ongoing use and maintenance might affect how BP contribute to aquatic biodiversity. We explored the 'within-habitat' effect of an ecosystem engineer by comparing active BP in southern Sweden with coexisting other wetlands (OW), using sedentary (plants) and mobile (water beetles) organisms as indicators. BP differed predictably from OW in environmental characteristics and were more heterogeneous. BP supported more plant species at plot (+15%) and site (+33%) scales, and plant beta diversity, based on turnover between plots, was 17% higher than in OW, contributing to a significantly larger species pool in BP (+17%). Beetles were not differentiated between BP and OW based on diversity measures but were 26% more abundant in BP. Independent of habitat creation beaver are thus significant agents of within-habitat heterogeneity that differentiates BP from other standing water habitat; as an integral component of the rewilding of wetlands re-establishing beaver should benefit aquatic biodiversity across multiple scales.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.


Assuntos
Besouros , Conservação dos Recursos Naturais , Plantas , Roedores/fisiologia , Áreas Alagadas , Animais , Biodiversidade , Biota , Besouros/classificação , Plantas/classificação , Suécia
2.
Environ Sci Technol ; 49(21): 12679-87, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26450629

RESUMO

Elevated concentrations of methylmercury (MeHg) in freshwater ecosystems are of major environmental concern in large parts of the northern hemisphere. Beaver ponds have been identified as a potentially important source of MeHg. The role of beavers might be especially pronounced in large parts of Europe, where beaver populations have expanded rapidly following near-extirpation. This study evaluates the role of the age and colonization history (encompassing patterns of use and reuse) of ponds constructed by the Eurasian beaver Castor fiber in regulating MeHg concentrations in Swedish streams. In 12 beaver systems located in three regions, we quantified MeHg concentrations together with other relevant parameters on five occasions per year in 2012-2013. Five were pioneer systems, inundated for the first time since beaver extirpation, and seven were recolonized, with dams reconstructed by newly recolonizing beavers. MeHg concentrations in pioneer but not in recolonized beaver systems were up to 3.5 fold higher downstream than upstream of the ponds, and varied between seasons and years. Our results show that pioneer inundation by beavers can increase MeHg concentrations in streams, but that this effect is negligible when dams are reconstructed on previously used ponds. We therefore expect that the recovery and expansion of beavers in the boreal system will only have a transitional effect on MeHg in the environment.


Assuntos
Compostos de Metilmercúrio/análise , Lagoas , Roedores , Poluentes Químicos da Água/análise , Animais , Ecossistema , Meio Ambiente , Europa (Continente) , Água Doce , Estações do Ano , Suécia , Água
3.
PLoS One ; 8(3): e58229, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505472

RESUMO

Mountains provide an opportunity to examine changes in biodiversity across environmental gradients and areas of transition (ecotones). Mountain ecotones separate vegetation belts. Here, we aimed to examine whether transition areas for birds and butterflies spatially correspond with ecotones between three previously described altitudinal vegetation belts on Mt. Hermon, northern Israel. These include the Mediterranean Maquis, xero-montane open forest and Tragacanthic mountain steppe vegetation belts. We sampled the abundance of bird and butterfly species in 34 sampling locations along an elevational gradient between 500 and 2200 m. We applied wombling, a boundary-detection technique, which detects rapid changes in a continuous variable, in order to locate the transition areas for bird and butterfly communities and compare the location of these areas with the location of vegetation belts as described in earlier studies of Mt. Hermon. We found some correspondence between the areas of transition of both bird and butterfly communities and the ecotones between vegetation belts. For birds and butterflies, important transitions occurred at the lower vegetation ecotone between Mediterranean maquis and the xero-montane open forest vegetation belts, and between the xero-montane open forest and the mountain steppe Tragacanthic belts. While patterns of species turnover with elevation were similar for birds and butterflies, the change in species richness and diversity with elevation differed substantially between the two taxa. Birds and butterflies responded quite similarly to the elevational gradient and to the shift between vegetation belts in terms of species turnover rates. While the mechanisms generating these patterns may differ, the resulting areas of peak turnover in species show correspondence among three different taxa (plants, birds and butterflies).


Assuntos
Aves/fisiologia , Borboletas/fisiologia , Ecossistema , Geografia , Animais , Biodiversidade , Meio Ambiente , Israel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...