Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255723

RESUMO

Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide-oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case.

2.
Angew Chem Int Ed Engl ; 61(29): e202203067, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35445525

RESUMO

The synthesis of complementary strands is the reaction underlying the replication of genetic information. It is likely that the earliest self-replicating systems used RNA as genetic material. How RNA was copied in the absence of enzymes and what sequences were most likely to have supported replication is not clear. Here we show that mixtures of dinucleotides with C and G as bases copy an RNA sequence of up to 12 nucleotides in dilute aqueous solution. Successful enzyme-free copying occurred with in situ activation at 4 °C and pH 6.0. Dimers were incorporated in favor of monomers when both competed as reactants, and little misincorporation was detectable in mass spectra. Simulations using experimental rate constants confirmed that mixed C/G sequences are good candidates for successful replication with dimers. Because dimers are intermediates in the synthesis of longer strands, our results support evolutionary scenarios encompassing formation and copying of RNA strands in enzyme-free fashion.


Assuntos
Nucleotídeos , RNA , Fosfatos de Dinucleosídeos , Espectrometria de Massas , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...