Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 3291-3303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832612

RESUMO

Neuroblastoma (NB) is the most common extracranial solid tumor in children. Although only a few recurrent somatic mutations have been identified, chromosomal abnormalities, including the loss of heterozygosity (LOH) at the chromosome 1p and gains of chromosome 17q, are often seen in the high-risk cases. The biological basis and evolutionary forces that drive such genetic abnormalities remain enigmatic. Here, we conceptualize the Gene Utility Model (GUM) that seeks to identify genes driving biological signaling via their collective gene utilities and apply it to understand the impact of those differentially utilized genes on constraining the evolution of NB karyotypes. By employing a computational process-guided flow algorithm to model gene utility in protein-protein networks that built based on transcriptomic data, we conducted several pairwise comparative analyses to uncover genes with differential utilities in stage 4 NBs with distinct classification. We then constructed a utility karyotype by mapping these differentially utilized genes to their respective chromosomal loci. Intriguingly, hotspots of the utility karyotype, to certain extent, can consistently recapitulate the major chromosomal abnormalities of NBs and also provides clues to yet identified predisposition sites. Hence, our study not only provides a new look, from a gene utility perspective, into the known chromosomal abnormalities detected by integrative genomic sequencing efforts, but also offers new insights into the etiology of NB and provides a framework to facilitate the identification of novel therapeutic targets for this devastating childhood cancer.

2.
Front Oncol ; 11: 668247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268113

RESUMO

Basal cell carcinoma (BCC) is a locally invasive epithelial cancer that is primarily driven by the Hedgehog (HH) pathway. Advanced BCCs are a critical subset of BCCs that frequently acquire resistance to Smoothened (SMO) inhibitors and identifying pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify a PI3K pathway expression signature in BCC. Pharmacological inhibition of PI3K activity in BCC cells significantly reduces cell proliferation and HH signaling. However, treatment of Ptch1fl/fl ; Gli1-CreERT2 mouse BCCs with the PI3K inhibitor BKM120 results in a reduction of tumor cell growth with no significant effect on HH signaling. Downstream PI3K components aPKC and Akt1 showed a reduction in active protein, whereas their substrate, cyclin-dependent kinase inhibitor p21, showed a concomitant increase in protein stability. Our results suggest that PI3K promotes BCC tumor growth by kinase-induced p21 degradation without altering HH signaling.

3.
Cells ; 10(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800887

RESUMO

For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.


Assuntos
Proteínas de Neoplasias/genética , Neoplasias do Sistema Nervoso/genética , Neuroblastoma/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Edição de Genes/métodos , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Mutação , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias/métodos , Neoplasias do Sistema Nervoso/tratamento farmacológico , Neoplasias do Sistema Nervoso/metabolismo , Neoplasias do Sistema Nervoso/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
J Vis Exp ; (169)2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33779609

RESUMO

Zebrafish has emerged as an important animal model to study human diseases, especially cancer. Along with the robust transgenic and genome editing technologies applied in zebrafish modeling, the ease of maintenance, high-yield productivity, and powerful live imaging altogether make the zebrafish a valuable model system to study metastasis and cellular and molecular bases underlying this process in vivo. The first zebrafish neuroblastoma (NB) model of metastasis was developed by overexpressing two oncogenes, MYCN and LMO1, under control of the dopamine-beta-hydroxylase (dßh) promoter. Co-overexpressed MYCN and LMO1 led to the reduced latency and increased penetrance of neuroblastomagenesis, as well as accelerated distant metastasis of tumor cells. This new model reliably reiterates many key features of human metastatic NB, including involvement of clinically relevant and metastasis-associated genetic alterations; natural and spontaneous development of metastasis in vivo; and conserved sites of metastases. Therefore, the zebrafish model possesses unique advantages to dissect the complex process of tumor metastasis in vivo.


Assuntos
Neuroblastoma/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Peixe-Zebra
5.
Exp Dermatol ; 30(3): 358-366, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617094

RESUMO

Advanced basal cell carcinomas (BCCs) are driven by the Hedgehog (HH) pathway and often possess inherent resistance to SMO inhibitors. Identifying and targeting pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify an MTOR expression signature in BCC. Pharmacological inhibition of MTOR activity in BCC cells significantly reduces cell proliferation without affecting HH signalling. Similarly, treatment of the Ptch1 fl/fl ; Gli1-CreERT2 mouse BCC tumor model with everolimus reduces tumor growth. aPKC, a downstream target of MTOR, shows reduced activity, suggesting that MTOR promotes tumor growth by activating aPKC and demonstrating that suppressing MTOR could be a promising target for BCC patients.


Assuntos
Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Serina-Treonina Quinases TOR , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Everolimo/farmacologia , Everolimo/uso terapêutico , Proteínas Hedgehog/metabolismo , Humanos , Imidazóis/farmacologia , Imuno-Histoquímica , Camundongos , Receptor Patched-1/genética , Proteína Quinase C/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Triazinas/farmacologia , Proteína GLI1 em Dedos de Zinco/genética
6.
Cancer Res ; 81(11): 2995-3007, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602789

RESUMO

One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the MYCN oncogene. However, only a limited number of regulatory proteins that contribute to this complex MYCN-mediated process have been elucidated. Here we show that the growth arrest-specific 7 (GAS7) gene, located at chromosome band 17p13.1, is preferentially deleted in high-risk MYCN-driven neuroblastoma. GAS7 expression was also suppressed in MYCN-amplified neuroblastoma lacking 17p deletion. GAS7 deficiency led to accelerated metastasis in both zebrafish and mammalian models of neuroblastoma with overexpression or amplification of MYCN. Analysis of expression profiles and the ultrastructure of zebrafish neuroblastoma tumors with MYCN overexpression identified that GAS7 deficiency led to (i) downregulation of genes involved in cell-cell interaction, (ii) loss of contact among tumor cells as critical determinants of accelerated metastasis, and (iii) increased levels of MYCN protein. These results provide the first genetic evidence that GAS7 depletion is a critical early step in the cascade of events culminating in neuroblastoma metastasis in the context of MYCN overexpression. SIGNIFICANCE: Heterozygous deletion or MYCN-mediated repression of GAS7 in neuroblastoma releases an important brake on tumor cell dispersion and migration to distant sites, providing a novel mechanism underlying tumor metastasis in MYCN-driven neuroblastoma.See related commentary by Menard, p. 2815.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Medula Óssea/secundário , Deleção Cromossômica , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas do Tecido Nervoso/deficiência , Neuroblastoma/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos SCID , Proteína Proto-Oncogênica N-Myc/genética , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA