Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 28(10): 2100-2106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36216942

RESUMO

To test the hypothesis that the gut microbiota of individuals with nonalcoholic fatty liver disease (NAFLD) produce enough ethanol to be a driving force in the development and progression of this complex disease, we performed one prospective clinical study and one intervention study. Ethanol was measured while fasting and 120 min after a mixed meal test (MMT) in 146 individuals. In a subset of 37 individuals and in an external validation cohort, ethanol was measured in portal vein blood. In an intervention study, ten individuals with NAFLD and ten overweight but otherwise healthy controls were infused with a selective alcohol dehydrogenase (ADH) inhibitor before an MMT. When compared to fasted peripheral blood, median portal vein ethanol concentrations were 187 (interquartile range (IQR), 17-516) times higher and increased with disease progression from 2.1 mM in individuals without steatosis to 8.0 mM in NAFL 21.0 mM in nonalcoholic steatohepatitis. Inhibition of ADH induced a 15-fold (IQR,1.6- to 20-fold) increase in peripheral blood ethanol concentrations in individuals with NAFLD, although this effect was abolished after antibiotic treatment. Specifically, Lactobacillaceae correlated with postprandial peripheral ethanol concentrations (Spearman's rho, 0.42; P < 10-5) in the prospective study. Our data show that the first-pass effect obscures the levels of endogenous ethanol production, suggesting that microbial ethanol could be considered in the pathogenesis of this highly prevalent liver disease.


Assuntos
Microbiota , Hepatopatia Gordurosa não Alcoólica , Álcool Desidrogenase , Antibacterianos , Etanol , Humanos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos
2.
Gut ; 71(8): 1577-1587, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34697034

RESUMO

OBJECTIVE: Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. DESIGN: In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. RESULTS: A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. CONCLUSIONS: A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity. TRIAL REGISTRATION NUMBER: NTR-NL6630.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Glicemia/metabolismo , Automonitorização da Glicemia , Clostridiales , Estudos Cross-Over , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Controle Glicêmico , Humanos , Insulina/metabolismo , Masculino , Síndrome Metabólica/genética , Transcriptoma
3.
Gut ; 70(1): 92-105, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33106354

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) is characterised by islet autoimmunity and beta cell destruction. A gut microbiota-immunological interplay is involved in the pathophysiology of T1D. We studied microbiota-mediated effects on disease progression in patients with type 1 diabetes using faecal microbiota transplantation (FMT). DESIGN: Patients with recent-onset (<6 weeks) T1D (18-30 years of age) were randomised into two groups to receive three autologous or allogenic (healthy donor) FMTs over a period of 4 months. Our primary endpoint was preservation of stimulated C peptide release assessed by mixed-meal tests during 12 months. Secondary outcome parameters were changes in glycaemic control, fasting plasma metabolites, T cell autoimmunity, small intestinal gene expression profile and intestinal microbiota composition. RESULTS: Stimulated C peptide levels were significantly preserved in the autologous FMT group (n=10 subjects) compared with healthy donor FMT group (n=10 subjects) at 12 months. Small intestinal Prevotella was inversely related to residual beta cell function (r=-0.55, p=0.02), whereas plasma metabolites 1-arachidonoyl-GPC and 1-myristoyl-2-arachidonoyl-GPC levels linearly correlated with residual beta cell preservation (rho=0.56, p=0.01 and rho=0.46, p=0.042, respectively). Finally, baseline CD4 +CXCR3+T cell counts, levels of small intestinal Desulfovibrio piger and CCL22 and CCL5 gene expression in duodenal biopsies predicted preserved beta cell function following FMT irrespective of donor characteristics. CONCLUSION: FMT halts decline in endogenous insulin production in recently diagnosed patients with T1D in 12 months after disease onset. Several microbiota-derived plasma metabolites and bacterial strains were linked to preserved residual beta cell function. This study provides insight into the role of the intestinal gut microbiome in T1D. TRIAL REGISTRATION NUMBER: NTR3697.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Transplante de Microbiota Fecal/métodos , Adolescente , Adulto , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Duodeno/metabolismo , Duodeno/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Células Secretoras de Insulina/fisiologia , Masculino , Transplante Autólogo , Adulto Jovem
4.
NPJ Biofilms Microbiomes ; 6(1): 16, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221294

RESUMO

Dysbiosis of the intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We performed a phase I/II dose-finding and safety study on the effect of oral intake of the anaerobic butyrogenic strain Anaerobutyricum soehngenii on glucose metabolism in 24 subjects with metabolic syndrome. We found that treatment with A. soehngenii was safe and observed a significant correlation between the measured fecal abundance of administered A. soehngenii and improvement in peripheral insulin sensitivity after 4 weeks of treatment. This was accompanied by an altered microbiota composition and a change in bile acid metabolism. Finally, we show that metabolic response upon administration of A. soehngenii (defined as improved insulin sensitivity 4 weeks after A. soehngenii intake) is dependent on microbiota composition at baseline. These data in humans are promising, but additional studies are needed to reproduce our findings and to investigate long-term effects, as well as other modes of delivery.


Assuntos
Bactérias/classificação , Clostridiales/fisiologia , Fezes/microbiologia , Glucose/metabolismo , Síndrome Metabólica/dietoterapia , Administração Oral , Adulto , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Ácidos e Sais Biliares/metabolismo , Suplementos Nutricionais/efeitos adversos , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal , Humanos , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Projetos Piloto , Análise de Sequência de DNA , Resultado do Tratamento
5.
Ann Rheum Dis ; 72(4): 560-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22589377

RESUMO

OBJECTIVE: An atherogenic lipid profile is an established risk factor for cardiovascular (CV) diseases. Interestingly, high inflammatory states as present in rheumatoid arthritis (RA) are associated with unfavourable lipid profile. Data about effects of novel immunomodulating agents as rituximab (RTX) on lipid profile are limited. Therefore, changes in lipids in RTX treated RA patients were evaluated. METHODS: In 49 consecutive RTX treated RA patients, serum and EDTA plasma samples were collected at baseline, 1, 3 and 6 months. In these samples, lipid and levels were assessed to determine changes in time. Surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) MS analysis was performed in six good and six non-responding RA patients to study functional high density lipoprotein (HDL) protein composition changes in time. RESULTS: In the total group (n=49), the atherogenic index decreased from 4.3 to 3.9 (∼9%) after 6 months. Testing for effect modification revealed a difference in the effect on lipid levels between responders and non-responders upon RTX (p<0.001). ApoB to ApoA-I ratios decreased significantly (∼9%) in good responding (n=32) patients. SELDI-TOF MS analysis revealed a significant decrease in density of mass charge (m/z) marker 11743, representing a decrease in serum amyloid A, in good responding patients. CONCLUSION: This study indicates beneficial effects on cholesterol profile upon RTX treatment along with improvement of disease activity. Proteomic analysis of the HDL particle reveals composition changes from proatherogenic to a less proatherogenic composition during 6 months RTX treatment. Whether these HDL particle alterations during immunotherapies result in a lower CV event rate remains to be established.


Assuntos
Anticorpos Monoclonais Murinos/uso terapêutico , Artrite Reumatoide , Aterosclerose , HDL-Colesterol/sangue , Imunomodulação/efeitos dos fármacos , Adulto , Idoso , Antirreumáticos/uso terapêutico , Apolipoproteínas A/análise , Apolipoproteínas A/sangue , Apolipoproteínas B/análise , Apolipoproteínas B/sangue , Artrite Reumatoide/sangue , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/epidemiologia , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/prevenção & controle , HDL-Colesterol/análise , LDL-Colesterol/análise , LDL-Colesterol/sangue , Feminino , Humanos , Imunomodulação/imunologia , Masculino , Pessoa de Meia-Idade , Proteômica , Fatores de Risco , Rituximab , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Resultado do Tratamento , Triglicerídeos/análise , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...