Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Neurobiol ; 6: 100131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812499

RESUMO

Catamenial epilepsy, defined as a periodicity of seizure exacerbation during the menstrual cycle, affects up to 70 % of epileptic women. Seizures in these patients are often non-responsive to medication; however, our understanding of the relation between menstrual cycle and seizure generation (i.e. ictogenesis) remains limited. We employed here field potential recordings in the in vitro 4-aminopyridine model of epileptiform synchronization in female mice (P60-P130) and found that: (i) the estrous phase favors ictal activity in the entorhinal cortex; (ii) these ictal discharges display an onset pattern characterised by the presence of chirps that are thought to mirror synchronous interneuron firing; and (iii) blocking estrogen receptor ß-mediated signaling reduces ictal discharge duration. Our findings indicate that the duration of 4AP-induced ictal discharges, in vitro, increases during the estrous phase, which corresponds to the human peri-ovulatory period. We propose that these effects are caused by the presumptive enhancement of interneuron excitability due to increased estrogen receptor ß-mediated signaling.

2.
medRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352438

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

3.
Nucleic Acids Res ; 52(D1): D522-D528, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956315

RESUMO

The OpenProt proteogenomic resource (https://www.openprot.org/) provides users with a complete and freely accessible set of non-canonical or alternative open reading frames (AltORFs) within the transcriptome of various species, as well as functional annotations of the corresponding protein sequences not found in standard databases. Enhancements in this update are largely the result of user feedback and include the prediction of structure, subcellular localization, and intrinsic disorder, using cutting-edge algorithms based on machine learning techniques. The mass spectrometry pipeline now integrates a machine learning-based peptide rescoring method to improve peptide identification. We continue to help users explore this cryptic proteome by providing OpenCustomDB, a tool that enables users to build their own customized protein databases, and OpenVar, a genomic annotator including genetic variants within AltORFs and protein sequences. A new interface improves the visualization of all functional annotations, including a spectral viewer and the prediction of multicoding genes. All data on OpenProt are freely available and downloadable. Overall, OpenProt continues to establish itself as an important resource for the exploration and study of new proteins.


Assuntos
Bases de Dados de Proteínas , Peptídeos , Proteômica , Sequência de Aminoácidos , Genômica , Internet , Peptídeos/genética , Proteoma/genética , Proteômica/métodos , Humanos
4.
Curr Res Neurobiol ; 5: 100117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020804

RESUMO

The K+ channel blocker 4-aminopyridine (4AP) has been extensively used to investigate the mechanisms underlying neuronal network synchronization in both in vitro and in vivo animal models of focal epilepsy. 4AP-induced effects are paralleled by an increase in both excitatory and inhibitory neurotransmitter release, but the mechanisms of action of 4AP on neuronal networks remain unclear. By employing simultaneous whole-cell patch clamp and field potential recordings from hippocampal CA3/4 pyramidal layer of acute brain slices obtained from mice (n = 30), we found that the appearance of epileptiform discharges induced by 4AP (100 µM) is consistently preceded by the transient recurrence of presumptive GABAB outward currents, which are not mirrored by any field activity. These GABAB outward currents still occurred during application of ionotropic glutamatergic antagonists (n = 12 cells) but were blocked by the GABAB receptor antagonist CGP55845 (n = 7). Our findings show that the transient occurrence of distinct GABAB outward currents precedes the appearance of 4AP-induced neuronal network synchronization leading to epileptiform activity in the rodent hippocampus in vitro.

5.
J Neurophysiol ; 130(4): 1041-1052, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703488

RESUMO

Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsy and it is characterized by seizures that are often refractory to medications. Seizures in MTLE have two main patterns of onset that have been termed hypersynchronous (HYP) and low-voltage fast (LVF) and are believed to mainly depend on the activity of excitatory principal cells and inhibitory interneurons, respectively. In this study, we investigated whether unilateral open-loop optogenetic activation of CaMKII-positive principal cells in the hippocampus CA3 region favors the generation of spontaneous HYP seizures in kainic acid-treated (KA) CaMKII-ChR2 mice. Optogenetic activation of CA3 principal cells (1 Hz, 180 s ON, 220 s OFF) was implemented for 15 days after KA-induced status epilepticus. We found that both LVF and HYP seizures occurred in nonstimulated CaMKII-ChR2 (n = 6) and stimulated CaMKII-Cre (n = 5) mice. In contrast, optogenetic activation of principal cells in CaMKII-ChR2 mice (n = 5) triggered only HYP seizures that were characterized by high fast ripple (250-500 Hz) rates during the pre-ictal and ictal periods. These results provide firm evidence that in MTLE spontaneous seizures with different onset patterns depend on distinct neuronal network mechanisms of generation. They also demonstrate that HYP seizures occurring in vivo along with their associated fast ripples depend on the activity of principal cells in the CA3 region.NEW & NOTEWORTHY Previous evidence suggested that different seizure onset patterns rely on the activity of distinct neuronal populations. In this study, we show for the first time that in vivo optogenetic stimulation of CaMKII principal cells in kainic acid-treated mice triggers hypersynchronous-onset seizures that are associated with fast ripples. Our findings indicate that in patients with predominant HYP-onset seizures, anticonvulsant treatments should be aimed at limiting the firing of principal neurons in the seizure onset zone.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Humanos , Camundongos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Ácido Caínico/toxicidade , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Convulsões/induzido quimicamente , Modelos Animais de Doenças , Hipocampo , Eletroencefalografia
6.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37561584

RESUMO

Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.


Assuntos
Doença de Alzheimer , Quinona Redutases , Animais , Humanos , Camundongos , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Hipocampo/metabolismo , Estresse Oxidativo , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , Estresse Fisiológico
7.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37473758

RESUMO

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Neurônios/metabolismo , Fenótipo , Camundongos Knockout , Modelos Animais de Doenças
8.
J Neurophysiol ; 129(5): 1218-1223, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073973

RESUMO

Emerging evidence suggests that the medial septum can control seizures occurring in focal epileptic disorders, thus representing a therapeutic target. Therefore, we investigated whether continuous optogenetic activation of inhibitory parvalbumin (PV)-positive interneurons in the medial septum can reduce the occurrence of spontaneous seizures in the pilocarpine model of mesial temporal lobe epilepsy (MTLE). Light pulses (450 nm, 25 mW, 20-ms pulse duration) were delivered at 0.5 Hz (5 min ON, 10 min OFF) with a laser diode fiber light source between day 8 and day 12 after status epilepticus (SE) in PV-ChR2 mice (n = 8). Seizure rates were significantly lower during time periods of optogenetic stimulation (days 8-12) compared with before implementation of optogenetics (days 4-7) (P < 0.05). Moreover, between day 13 and day 21 after SE seizure rates were still significantly lower compared with before optogenetic stimulation (i.e., between day 4 and day 7) (P < 0.05). No seizures were recorded between day 10 and day 12 in all animals, and no seizures occurred up to 3 days after the end of optogenetic stimulation (days 13-15). Our findings indicate that activation of PV interneurons in the medial septum abates seizures in the pilocarpine model of MTLE. Moreover, the persisting anti-ictogenic effects suggest that stimulation of the medial septum could alter the progression of MTLE.NEW & NOTEWORTHY The medial septum could represent a therapeutic target to treat patients with focal epilepsy. In this study, we show that optogenetic activation of inhibitory parvalbumin-positive interneurons in the medial septum can block spontaneous seizures and prevents their reoccurrence for ∼5 days after the end of stimulation. Our findings suggest that the anti-ictogenic effects induced by stimulation of the medial septum could also alter the progression of mesial temporal lobe epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/terapia , Optogenética , Pilocarpina/toxicidade , Parvalbuminas/metabolismo , Estado Epiléptico/induzido quimicamente , Hipocampo/metabolismo , Modelos Animais de Doenças
9.
Neurobiol Dis ; 180: 106065, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907521

RESUMO

Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Animais , Humanos , Epilepsia do Lobo Temporal/induzido quimicamente , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Eletroencefalografia
10.
Neurobiol Dis ; 180: 106097, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967064

RESUMO

We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.


Assuntos
Epilepsias Parciais , Simportadores , Animais , Humanos , Ligantes , Convulsões , Receptores de GABA-A , Ácido gama-Aminobutírico
11.
Front Neural Circuits ; 16: 984802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275847

RESUMO

Under physiological conditions, neuronal network synchronization leads to different oscillatory EEG patterns that are associated with specific behavioral and cognitive functions. Excessive synchronization can, however, lead to focal or generalized epileptiform activities. It is indeed well established that in both epileptic patients and animal models, focal epileptiform EEG patterns are characterized by interictal and ictal (seizure) discharges. Over the last three decades, employing in vitro and in vivo recording techniques, several experimental studies have firmly identified a paradoxical role of GABAA signaling in generating interictal discharges, and in initiating-and perhaps sustaining-focal seizures. Here, we will review these experiments and we will extend our appraisal to evidence suggesting that GABAA signaling may also contribute to epileptogenesis, i.e., the development of plastic changes in brain excitability that leads to the chronic epileptic condition. Overall, we anticipate that this information should provide the rationale for developing new specific pharmacological treatments for patients presenting with focal epileptic disorders such as mesial temporal lobe epilepsy (MTLE).


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Animais , Convulsões , Ácido gama-Aminobutírico , Eletroencefalografia
12.
J Neurophysiol ; 128(4): 837-846, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36043700

RESUMO

GABAA signaling is surprisingly involved in the initiation of epileptiform activity since increased interneuron firing, presumably leading to excessive GABA release, often precedes ictal discharges. Field potential theta (4-12 Hz) oscillations, which are thought to mirror the synchronization of interneuron networks, also lead to ictogenesis. However, the exact role of parvalbumin-positive (PV) interneurons in generating theta oscillations linked to epileptiform discharges remains unexplored. We analyzed here the field responses recorded in the CA3, entorhinal cortex (EC), and dentate gyrus (DG) during 8-Hz optogenetic stimulation of PV-positive interneurons in brain slices obtained from PV-ChR2 mice during 4-aminopyridine (4AP) application. This optogenetic protocol triggered similar field oscillations in both control conditions and during 4AP application. However, in the presence of 4AP, optogenetic stimuli also induced: 1) interictal discharges that were associated in all regions with 8-Hz field oscillations and 2) low-voltage fast onset ictal discharges. Interictal and ictal events occurred more frequently during optogenetic activation than during periods of no stimulation. 4AP also increased synchronicity during PV-interneuron activation in all three regions. In opsin-negative mice, optogenetic stimulation did not change the rate of both types of epileptiform activity. Our findings suggest that PV-interneuron recruitment at theta (8 Hz) frequency contributes to epileptiform synchronization in limbic structures in the in vitro 4AP model.NEW & NOTEWORTHY Previous studies have identified contradictory roles of PV-interneurons in ictogenesis and the link between theta oscillations and epileptiform activity remains unexplored. Here, we investigated in vitro the effect of PV-interneuron optogenetic stimulation under 4AP in temporal lobe regions obtained from PV-ChR2 transgenic mice. Under theta (8 Hz) optogenetic stimulation and 4AP application, interictal spikes and low-voltage fast onset ictal discharges were triggered, suggesting that the activation of PV-interneurons favors synchronization and ictogenesis.


Assuntos
Optogenética , Parvalbuminas , 4-Aminopiridina , Animais , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Opsinas , Parvalbuminas/genética , Ácido gama-Aminobutírico
13.
Neurobiol Dis ; 171: 105794, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718264

RESUMO

Mesial temporal lobe epilepsy (MTLE) is the most common type of focal refractory epilepsy and is characterized by recurring seizures that are often refractory to medication. Since parvalbumin-positive (PV) interneurons were recently shown to play significant roles in ictogenesis, we established here how bilateral optogenetic stimulation of these interneurons in the hippocampus CA3 regions modulates seizures, interictal spikes and high-frequency oscillations (HFOs; ripples: 80-200 Hz, fast ripples: 250-500 Hz) in the pilocarpine model of MTLE. Bilateral optogenetic stimulation of CA3 PV-positive interneurons at 8 Hz (lasting 30 s, every 2 min) was implemented in PV-ChR2 mice for 8 consecutive days starting on day 7 (n = 8) or on day 13 (n = 6) after pilocarpine-induced status epilepticus (SE). Seizure occurrence was higher in both day 7 and day 13 groups of PV-ChR2 mice during periods of optogenetic stimulation ("ON"), compared to when stimulation was not performed ("OFF") (day 7 group = p < 0.01, day 13 group = p < 0.01). In the PV-ChR2 day 13 group, rates of seizures (p < 0.05), of interictal spikes associated with fast ripples (p < 0.01), and of isolated fast ripples (p < 0.01) during optogenetic stimulations were significantly higher than in the PV-ChR2 day 7 group. Our findings reveal that bilateral activation of PV-interneurons in the hippocampus (leading to a presumptive increase in GABA signaling) favors ictogenesis. These effects may also mirror the neuropathological changes that occur over time after SE in this animal model.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Epilepsia do Lobo Temporal/patologia , Camundongos , Optogenética , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
14.
Curr Neuropharmacol ; 20(9): 1704-1716, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34429053

RESUMO

GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.


Assuntos
Epilepsias Parciais , Receptores de GABA-B , Adulto , Humanos , Receptores de GABA-A , Convulsões , Ácido gama-Aminobutírico
15.
Brain ; 145(2): 754-769, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34791091

RESUMO

Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy; however, whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.


Assuntos
Haploinsuficiência , Deficiência Intelectual , Animais , Biomarcadores , Eletroencefalografia , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Percepção , Proteínas Ativadoras de ras GTPase/genética
16.
Neurosci Biobehav Rev ; 130: 274-291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437936

RESUMO

Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo , Camundongos , Pilocarpina/toxicidade , Ratos , Roedores , Estado Epiléptico/induzido quimicamente
17.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876772

RESUMO

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as PTEN, TSC1/2, AKT3, PIK3CA, and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity. However, the role of mTORC1-dependent translation and the neuronal cell types mediating the effect of enhanced mTORC1 activity in seizures remain unknown. The eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 2 (4E-BP2) are translational repressors downstream of mTORC1. Here we show that the ablation of 4E-BP2, but not 4E-BP1, in mice increases the sensitivity to pentylenetetrazole (PTZ)- and kainic acid (KA)-induced seizures. We demonstrate that the deletion of 4E-BP2 in inhibitory, but not excitatory neurons, causes an increase in the susceptibility to PTZ-induced seizures. Moreover, mice lacking 4E-BP2 in parvalbumin, but not somatostatin or VIP inhibitory neurons exhibit a lowered threshold for seizure induction and reduced number of parvalbumin neurons. A mouse model harboring a human PIK3CA mutation that enhances the activity of the PI3K-AKT pathway (Pik3caH1047R-Pvalb ) selectively in parvalbumin neurons shows susceptibility to PTZ-induced seizures. Our data identify 4E-BP2 as a regulator of epileptogenesis and highlight the central role of increased mTORC1-dependent translation in parvalbumin neurons in the pathophysiology of epilepsy.


Assuntos
Epilepsia/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Neurônios/metabolismo , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Iniciação em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Neurônios/fisiologia , Parvalbuminas/genética , Parvalbuminas/metabolismo
18.
Rev Neurosci ; 32(3): 249-273, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33661586

RESUMO

The subicular complex (hereafter referred as subiculum), which is reciprocally connected with the hippocampus and rhinal cortices, exerts a major control on hippocampal outputs. Over the last three decades, several studies have revealed that the subiculum plays a pivotal role in learning and memory but also in pathological conditions such as mesial temporal lobe epilepsy (MTLE). Indeed, subicular networks actively contribute to seizure generation and this structure is relatively spared from the cell loss encountered in this focal epileptic disorder. In this review, we will address: (i) the functional properties of subicular principal cells under normal and pathological conditions; (ii) the subiculum role in sustaining seizures in in vivo models of MTLE and in in vitro models of epileptiform synchronization; (iii) its presumptive role in human MTLE; and (iv) evidence underscoring the relationship between subiculum and antiepileptic drug effects. The studies reviewed here reinforce the view that the subiculum represents a limbic area with relevant, as yet unexplored, roles in focal epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Hipocampo , Humanos , Convulsões
19.
Curr Res Neurobiol ; 2: 100008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36246508

RESUMO

Interictal spikes and high-frequency oscillations (HFOs, ripples: 80-200 â€‹Hz, fast ripples: 250-500 â€‹Hz) occur in epileptic patients and in animal models of mesial temporal lobe epilepsy (MTLE). In this study, we explored how type 1 and type 2 interictal spikes as well as ripples and fast ripples evolve during the latent period in the hippocampus of pilocarpine-treated mice. Depth EEG recordings were obtained from the hippocampus CA3 subfield of adult male mice (n â€‹= â€‹5, P60-P100) starting one day before pilocarpine-induced status epilepticus up to the first spontaneous seizure, the so-called latent period. We found that rates of type 1 (n â€‹= â€‹1 655) and type 2 (n â€‹= â€‹2 309) interictal spikes were significantly lower during the late phase of the latent period compared to its early and mid phase (p â€‹< â€‹0.001). However, rates of type 1 spikes associated with ripples (n â€‹= â€‹266) or fast ripples (n â€‹= â€‹106), as well as rates of type 2 interictal spikes associated with ripples (n â€‹= â€‹233), were significantly higher during the late phase compared to the early and mid phases (p â€‹< â€‹0.05). Our findings reveal that an increase of type 1 interictal spikes co-occurring with ripples or fast ripples and an increase of type 2 interictal spikes co-occurring with ripples mark the end of the latent period. We propose that changes in the occurrence of interictal spike associated with HFOs represent a biomarker of epileptogenicity in this mouse model of MTLE.

20.
Nucleic Acids Res ; 49(D1): D380-D388, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33179748

RESUMO

OpenProt (www.openprot.org) is the first proteogenomic resource supporting a polycistronic annotation model for eukaryotic genomes. It provides a deeper annotation of open reading frames (ORFs) while mining experimental data for supporting evidence using cutting-edge algorithms. This update presents the major improvements since the initial release of OpenProt. All species support recent NCBI RefSeq and Ensembl annotations, with changes in annotations being reported in OpenProt. Using the 131 ribosome profiling datasets re-analysed by OpenProt to date, non-AUG initiation starts are reported alongside a confidence score of the initiating codon. From the 177 mass spectrometry datasets re-analysed by OpenProt to date, the unicity of the detected peptides is controlled at each implementation. Furthermore, to guide the users, detectability statistics and protein relationships (isoforms) are now reported for each protein. Finally, to foster access to deeper ORF annotation independently of one's bioinformatics skills or computational resources, OpenProt now offers a data analysis platform. Users can submit their dataset for analysis and receive the results from the analysis by OpenProt. All data on OpenProt are freely available and downloadable for each species, the release-based format ensuring a continuous access to the data. Thus, OpenProt enables a more comprehensive annotation of eukaryotic genomes and fosters functional proteomic discoveries.


Assuntos
Bases de Dados de Proteínas , Eucariotos/genética , Genoma , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Espectrometria de Massas , Isoformas de Proteínas/genética , Proteogenômica , Ribossomos/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...