Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865490

RESUMO

Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.


Assuntos
Reparo do DNA , Proteínas de Drosophila , Evolução Molecular , Duplicação Gênica , Animais , Proteínas de Drosophila/genética , Filogenia , Drosophila melanogaster/genética , Drosophila/genética , Família Multigênica , Seleção Genética , DNA Satélite/genética
2.
Science ; 382(6671): 643-644, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943909

RESUMO

The specialized packaging of sperm DNA preserves genome stability in the fruit fly zygote.


Assuntos
Empacotamento do DNA , Drosophila melanogaster , Epigênese Genética , Herança Paterna , Espermatozoides , Animais , Masculino , Zigoto , Drosophila melanogaster/genética
3.
PLoS Genet ; 19(9): e1010906, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37703303

RESUMO

Fluctuating environments threaten fertility and viability. To better match the immediate, local environment, many organisms adopt alternative phenotypic states, a phenomenon called "phenotypic plasticity." Natural populations that predictably encounter fluctuating environments tend to be more plastic than conspecific populations that encounter a constant environment, suggesting that phenotypic plasticity can be adaptive. Despite pervasive evidence of such "adaptive phenotypic plasticity," gene regulatory mechanisms underlying plasticity remains poorly understood. Here we test the hypothesis that environment-dependent phenotypic plasticity is mediated by epigenetic factors. To test this hypothesis, we exploit the adaptive reproductive arrest of Drosophila melanogaster females, called diapause. Using an inbred line from a natural population with high diapause plasticity, we demonstrate that diapause is determined epigenetically: only a subset of genetically identical individuals enter diapause and this diapause plasticity is epigenetically transmitted for at least three generations. Upon screening a suite of epigenetic marks, we discovered that the active histone marks H3K4me3 and H3K36me1 are depleted in diapausing ovaries. Using ovary-specific knockdown of histone mark writers and erasers, we demonstrate that H3K4me3 and H3K36me1 depletion promotes diapause. Given that diapause is highly polygenic, that is, distinct suites of alleles mediate diapause plasticity across distinct genotypes, we also investigated the potential for genetic variation in diapause-determining epigenetic marks. Specifically, we asked if these histone marks were similarly depleted in diapause of a genotypically distinct line. We found evidence of divergence in both the gene expression program and histone mark abundance. This study reveals chromatin determinants of phenotypic plasticity and suggests that these determinants may be genotype-dependent, offering new insight into how organisms may exploit and evolve epigenetic mechanisms to persist in fluctuating environments.


Assuntos
Diapausa , Drosophila melanogaster , Feminino , Animais , Drosophila melanogaster/genética , Metilação , Histonas/genética , Processamento de Proteína Pós-Traducional
4.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693498

RESUMO

A species tree is a central concept in evolutionary biology whereby a single branching phylogeny reflects relationships among species. However, the phylogenies of different genomic regions often differ from the species tree. Although tree discordance is often widespread in phylogenomic studies, we still lack a clear understanding of how variation in phylogenetic patterns is shaped by genome biology or the extent to which discordance may compromise comparative studies. We characterized patterns of phylogenomic discordance across the murine rodents (Old World mice and rats) - a large and ecologically diverse group that gave rise to the mouse and rat model systems. Combining new linked-read genome assemblies for seven murine species with eleven published rodent genomes, we first used ultra-conserved elements (UCEs) to infer a robust species tree. We then used whole genomes to examine finer-scale patterns of discordance and found that phylogenies built from proximate chromosomal regions had similar phylogenies. However, there was no relationship between tree similarity and local recombination rates in house mice, suggesting that genetic linkage influences phylogenetic patterns over deeper timescales. This signal may be independent of contemporary recombination landscapes. We also detected a strong influence of linked selection whereby purifying selection at UCEs led to less discordance, while genes experiencing positive selection showed more discordant and variable phylogenetic signals. Finally, we show that assuming a single species tree can result in high error rates when testing for positive selection under different models. Collectively, our results highlight the complex relationship between phylogenetic inference and genome biology and underscore how failure to account for this complexity can mislead comparative genomic studies.

5.
Curr Biol ; 32(13): 2962-2971.e4, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35643081

RESUMO

Satellite DNA spans megabases of eukaryotic sequence and evolves rapidly.1-6 Paradoxically, satellite-rich genomic regions mediate strictly conserved, essential processes such as chromosome segregation and nuclear structure.7-10 A leading resolution to this paradox posits that satellite DNA and satellite-associated chromosomal proteins coevolve to preserve these essential functions.11 We experimentally test this model of intragenomic coevolution by conducting the first evolution-guided manipulation of both chromosomal protein and DNA satellite. The 359bp satellite spans an 11 Mb array in Drosophila melanogaster that is absent from its sister species, Drosophila simulans.12-14 This species-specific DNA satellite colocalizes with the adaptively evolving, ovary-enriched protein, maternal haploid (MH), the Drosophila homolog of Spartan.15 To determine if MH and 359bp coevolve, we swapped the D. simulans version of MH ("MH[sim]") into D. melanogaster. MH[sim] triggers ovarian cell death, reduced ovary size, and loss of mature eggs. Surprisingly, the D. melanogaster mh-null mutant has no such ovary phenotypes,15 suggesting that MH[sim] is toxic in a D. melanogaster background. Using both cell biology and genetics, we discovered that MH[sim] poisons oogenesis through a DNA-damage pathway. Remarkably, deleting the D. melanogaster-specific 359bp satellite array completely restores mh[sim] germline genome integrity and fertility, consistent with a history of coevolution between these two fast-evolving loci. Germline genome integrity and fertility are also restored by overexpressing topoisomerase II (Top2), suggesting that MH[sim] interferes with Top2-mediated processing of 359bp. The observed 359bp-MH[sim] cross-species incompatibility supports a model under which seemingly inert repetitive DNA and essential chromosomal proteins must coevolve to preserve germline genome integrity.


Assuntos
Proteínas de Drosophila , Venenos , Animais , DNA Satélite/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Células Germinativas/metabolismo
6.
Annu Rev Genet ; 55: 401-425, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34813351

RESUMO

Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat-packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.


Assuntos
Centrômero , Cromatina , Cromatina/genética , Evolução Molecular , Genoma , Genômica
7.
Cell ; 184(19): 4904-4918.e11, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433012

RESUMO

Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.


Assuntos
Proteína B de Centrômero/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Evolução Biológica , Sistemas CRISPR-Cas/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/química , Cromossomos de Mamíferos/metabolismo , Feminino , Heterocromatina/metabolismo , Cinetocoros/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oócitos/metabolismo , Domínios Proteicos
8.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33350936

RESUMO

Essential, conserved cellular processes depend not only on essential, strictly conserved proteins but also on essential proteins that evolve rapidly. To probe this poorly understood paradox, we exploited the rapidly evolving Drosophila telomere-binding protein, cav/HOAP, which protects chromosomes from lethal end-to-end fusions. We replaced the D. melanogaster HOAP with a highly diverged version from its close relative, D. yakuba. The D. yakuba HOAP ('HOAP[yak]') localizes to D. melanogaster telomeres and protects D. melanogaster chromosomes from fusions. However, HOAP[yak] fails to rescue a previously uncharacterized HOAP function: silencing of the specialized telomeric retrotransposons that, instead of telomerase, maintain chromosome length in Drosophila. Whole genome sequencing and cytogenetics of experimentally evolved populations revealed that HOAP[yak] triggers telomeric retrotransposon proliferation, resulting in aberrantly long telomeres. This evolution-generated, separation-of-function allele resolves the paradoxical observation that a fast-evolving essential gene directs an essential, strictly conserved function: telomeric retrotransposon containment, not end-protection, requires evolutionary innovation at HOAP.


Assuntos
Evolução Biológica , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Retroelementos/genética , Telômero/genética , Animais , Drosophila
9.
Trends Genet ; 36(4): 232-242, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155445

RESUMO

Telomeres ensure chromosome length homeostasis and protection from catastrophic end-to-end chromosome fusions. All eukaryotes require this essential, strictly conserved telomere-dependent genome preservation. However, recent evolutionary analyses of mammals, plants, and flies report pervasive rapid evolution of telomere proteins. The causes of this paradoxical observation - that unconserved machinery underlies an essential, conserved function - remain enigmatic. Indeed, these fast-evolving telomere proteins bind, extend, and protect telomeric DNA, which itself evolves slowly in most systems. We hypothesize that the universally fast-evolving subtelomere - the telomere-adjacent, repetitive sequence - is a primary driver of the 'telomere paradox'. Under this model, radical sequence changes in the subtelomere perturb subtelomere-dependent, telomere functions. Compromised telomere function then spurs adaptation of telomere proteins to maintain telomere length homeostasis and protection. We propose an experimental framework that leverages both protein divergence and subtelomeric sequence divergence to test the hypothesis that subtelomere sequence evolution shapes recurrent innovation of telomere machinery.


Assuntos
Evolução Molecular , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Animais , Dípteros/genética , Humanos , Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética
10.
Development ; 146(19)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558570

RESUMO

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.


Assuntos
Cromatina/genética , Evolução Molecular , Animais , Genoma , Humanos
11.
Genome Res ; 29(6): 920-931, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31138619

RESUMO

In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.


Assuntos
Telômero/genética , Telômero/metabolismo , Animais , Análise Citogenética , Drosophila melanogaster/fisiologia , Humanos , Hibridização in Situ Fluorescente , Filogenia , Reação em Cadeia da Polimerase , Retroelementos , Telomerase/metabolismo , Homeostase do Telômero
12.
Mol Biol Evol ; 35(10): 2375-2389, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924345

RESUMO

The heterochromatic genome compartment mediates strictly conserved cellular processes such as chromosome segregation, telomere integrity, and genome stability. Paradoxically, heterochromatic DNA sequence is wildly unconserved. Recent reports that many hybrid incompatibility genes encode heterochromatin proteins, together with the observation that interspecies hybrids suffer aberrant heterochromatin-dependent processes, suggest that heterochromatic DNA packaging requires species-specific innovations. Testing this model of coevolution between fast-evolving heterochromatic DNA and its packaging proteins begins with defining the latter. Here we describe many such candidates encoded by the Heterochromatin Protein 1 (HP1) gene family across Diptera, an insect Order that encompasses dramatic episodes of heterochromatic sequence turnover. Using BLAST, synteny analysis, and phylogenetic tree building across 64 Diptera genomes, we discovered a staggering 121 HP1 duplication events. In contrast, we observed virtually no gene duplication in gene families that share a common "chromodomain" with HP1s, including Polycomb and Su(var)3-9. The remarkably high number of Dipteran HP1 paralogs arises from distant clades undergoing convergent HP1 family amplifications. These independently derived, young HP1s span diverse ages, domain structures, and rates of molecular evolution, including episodes of positive selection. Moreover, independently derived HP1s exhibit convergent expression evolution. While ancient HP1 parent genes are transcribed ubiquitously, young HP1 paralogs are transcribed primarily in male germline tissue, a pattern typical of young genes. Pervasive gene youth, rapid evolution, and germline specialization implicate heterochromatin-encoded selfish elements driving recurrent HP1 gene family expansions. The 121 young genes offer valuable experimental traction for elucidating the germline processes shaped by Diptera's many dramatic episodes of heterochromatin turnover.


Assuntos
Proteínas Cromossômicas não Histona/genética , Dípteros/genética , Sequência de Aminoácidos/genética , Animais , Evolução Biológica , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/fisiologia , Evolução Molecular , Amplificação de Genes/genética , Duplicação Gênica/genética , Inativação Gênica , Instabilidade Genômica/genética , Heterocromatina/genética , Heterocromatina/fisiologia , Filogenia , Telômero/metabolismo
13.
Dev Cell ; 43(1): 1-3, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017026

RESUMO

Preservation of genome integrity is a conserved, essential function, yet genome defense machinery evolves rapidly. In this issue of Developmental Cell, Parhad et al. (2017) harness an evolution-guided approach to define the genetic determinants of genome defense and to reveal the molecular and cellular mechanisms shaped by adaptive evolution.


Assuntos
Evolução Molecular , Expressão Gênica/imunologia , Genoma/genética , Células Germinativas , Interações Hospedeiro-Patógeno/imunologia , Animais , Expressão Gênica/genética , Genoma/imunologia , Células Germinativas/imunologia , Humanos , RNA
14.
Mol Biol Evol ; 34(2): 467-482, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836984

RESUMO

Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond.


Assuntos
Drosophila melanogaster/genética , Telômero/genética , Animais , Dano ao DNA , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Feminino , Duplicação Gênica , Masculino , Proteínas Nucleares/genética , Filogenia , Telômero/metabolismo
15.
Mol Biol Evol ; 33(7): 1641-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26979388

RESUMO

Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Duplicação Gênica , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Feminino , Inativação Gênica , Variação Genética , Genoma de Inseto , Instabilidade Genômica , RNA Interferente Pequeno/genética , Seleção Genética
16.
Elife ; 4: e07378, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151671

RESUMO

Sperm-packaged DNA must undergo extensive reorganization to ensure its timely participation in embryonic mitosis. Whereas maternal control over this remodeling is well described, paternal contributions are virtually unknown. In this study, we show that Drosophila melanogaster males lacking Heterochromatin Protein 1E (HP1E) sire inviable embryos that undergo catastrophic mitosis. In these embryos, the paternal genome fails to condense and resolve into sister chromatids in synchrony with the maternal genome. This delay leads to a failure of paternal chromosomes, particularly the heterochromatin-rich sex chromosomes, to separate on the first mitotic spindle. Remarkably, HP1E is not inherited on mature sperm chromatin. Instead, HP1E primes paternal chromosomes during spermatogenesis to ensure faithful segregation post-fertilization. This transgenerational effect suggests that maternal control is necessary but not sufficient for transforming sperm DNA into a mitotically competent pronucleus. Instead, paternal action during spermiogenesis exerts post-fertilization control to ensure faithful chromosome segregation in the embryo.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Drosophila/metabolismo , Mitose , Espermatozoides/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Masculino , Testículo/metabolismo
17.
Fly (Austin) ; 7(3): 137-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519206

RESUMO

Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al (1) took a phylogenomic approach to discover new such protein "surrogates" of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a "revolving door" pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila/genética , Evolução Molecular , Expressão Gênica , Heterocromatina/genética , Animais , Feminino , Masculino
18.
PLoS Genet ; 8(6): e1002729, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737079

RESUMO

Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila/genética , Evolução Molecular , Expressão Gênica , Heterocromatina/genética , Sequência de Aminoácidos , Animais , Cromossomos/genética , Feminino , Genoma de Inseto , Mutação em Linhagem Germinativa , Masculino , Família Multigênica/genética , Filogenia , Seleção Genética
19.
Cell ; 147(7): 1440-1, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196722

RESUMO

Piwi-interacting RNAs (piRNAs) help defend host genomes against germline transposons. In this issue of Cell, Khurana et al. show how alterations in the piRNA-encoding loci within a single generation allow a naive fly genome to overcome the initially insurmountable challenge imposed by a newly encountered mobile element.

20.
Mol Biol Evol ; 28(1): 249-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20671040

RESUMO

The genotypic signature of spatially varying selection is ubiquitous across the Drosophila melanogaster genome. Spatially structured adaptive phenotypic differences are also commonly found, particularly along New World and Australian latitudinal gradients. However, investigation of gene expression variation in one or multiple environments across these well-studied populations is surprisingly limited. Here, we report genome-wide transcript levels of tropical and temperate eastern Australian populations reared at two temperatures. As expected, a large number of genes exhibit geographic origin-dependent expression plasticity. Less expected was evidence for an enrichment of down-regulated genes in both temperate and tropical populations when lines were reared at the temperature less commonly encountered in the native range; that is, evidence for significant differences in a "directionality" of plasticity across these two climatic regions. We also report evidence of small scale "neighborhood effects" around those genes significant for geographic origin-dependent plasticity, a result consistent with the evolution of high level, likely chromatin based gene regulation during range expansion in D. melanogaster populations.


Assuntos
Clima , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Evolução Molecular , Regulação da Expressão Gênica , Genética Populacional , Genoma de Inseto , Aclimatação/genética , Animais , Austrália , Cromatina/genética , Meio Ambiente , Variação Genética , Genótipo , Masculino , Fenótipo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...